Academic Journal
A Lightweight Object Detection Network for Real-Time Detection of Driver Handheld Call on Embedded Devices
العنوان: | A Lightweight Object Detection Network for Real-Time Detection of Driver Handheld Call on Embedded Devices |
---|---|
المؤلفون: | Zuopeng Zhao, Zhongxin Zhang, Xinzheng Xu, Yi Xu, Hualin Yan, Lan Zhang |
المصدر: | Computational Intelligence and Neuroscience, Vol 2020 (2020) |
بيانات النشر: | Hindawi Limited |
سنة النشر: | 2020 |
المجموعة: | Directory of Open Access Journals: DOAJ Articles |
مصطلحات موضوعية: | Computer applications to medicine. Medical informatics, R858-859.7, Neurosciences. Biological psychiatry. Neuropsychiatry, RC321-571 |
الوصف: | It is necessary to improve the performance of the object detection algorithm in resource-constrained embedded devices by lightweight improvement. In order to further improve the recognition accuracy of the algorithm for small target objects, this paper integrates 5 × 5 deep detachable convolution kernel on the basis of MobileNetV2-SSDLite model, extracts features of two special convolutional layers in addition to detecting the target, and designs a new lightweight object detection network—Lightweight Microscopic Detection Network (LMS-DN). The network can be implemented on embedded devices such as NVIDIA Jetson TX2. The experimental results show that LMS-DN only needs fewer parameters and calculation costs to obtain higher identification accuracy and stronger anti-interference than other popular object detection models. |
نوع الوثيقة: | article in journal/newspaper |
اللغة: | English |
تدمد: | 1687-5265 1687-5273 |
Relation: | http://dx.doi.org/10.1155/2020/6616584; https://doaj.org/toc/1687-5265; https://doaj.org/toc/1687-5273; https://doaj.org/article/b582df98209d44569ff8e8da12d39978 |
DOI: | 10.1155/2020/6616584 |
الاتاحة: | https://doi.org/10.1155/2020/6616584 https://doaj.org/article/b582df98209d44569ff8e8da12d39978 |
رقم الانضمام: | edsbas.AABED648 |
قاعدة البيانات: | BASE |
تدمد: | 16875265 16875273 |
---|---|
DOI: | 10.1155/2020/6616584 |