Academic Journal

Train Delay Prediction Systems: A Big Data Analytics Perspective

التفاصيل البيبلوغرافية
العنوان: Train Delay Prediction Systems: A Big Data Analytics Perspective
المؤلفون: Oneto, Luca, Fumeo, Emanuele, Clerico, Giorgio, Canepa, Renzo, Papa, Federico, Dambra, Carlo, Mazzino, Nadia, Anguita, Davide
المساهمون: Oneto, Luca, Fumeo, Emanuele, Clerico, Giorgio, Canepa, Renzo, Papa, Federico, Dambra, Carlo, Mazzino, Nadia, Anguita, Davide
سنة النشر: 2017
المجموعة: ARPI - Archivio della Ricerca dell'Università di Pisa
مصطلحات موضوعية: Big data analytic, Deep architecture, Extreme learning machine, Railway network, Shallow architecture, Train Delay Prediction system, Management Information System, Information System, Computer Science Applications1707 Computer Vision and Pattern Recognition, Information Systems and Management
الوصف: Current train delay prediction systems do not take advantage of state-of-the-art tools and techniques for handling and extracting useful and actionable information from the large amount of historical train movements data collected by the railway information systems. Instead, they rely on static rules built by experts of the railway infrastructure based on classical univariate statistic. The purpose of this paper is to build a data-driven Train Delay Prediction System (TDPS) for large-scale railway networks which exploits the most recent big data technologies, learning algorithms, and statistical tools. In particular, we propose a fast learning algorithm for Shallow and Deep Extreme Learning Machines that fully exploits the recent in-memory large-scale data processing technologies for predicting train delays. Proposal has been compared with the current state-of-the-art TDPSs. Results on real world data coming from the Italian railway network show that our proposal is able to improve over the current state-of-the-art TDPSs.
نوع الوثيقة: article in journal/newspaper
وصف الملف: STAMPA
اللغة: English
Relation: firstpage:1; lastpage:12; numberofpages:12; journal:BIG DATA RESEARCH; http://hdl.handle.net/11568/997071; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85020215215
DOI: 10.1016/j.bdr.2017.05.002
الاتاحة: http://hdl.handle.net/11568/997071
https://doi.org/10.1016/j.bdr.2017.05.002
رقم الانضمام: edsbas.A8885B44
قاعدة البيانات: BASE
الوصف
DOI:10.1016/j.bdr.2017.05.002