Academic Journal

Scars of the Wigner function.

التفاصيل البيبلوغرافية
العنوان: Scars of the Wigner function.
المؤلفون: Fabricio Toscano, Marcus A. M. De Aguiar, Alfredo M. Ozorio De Almeida
المساهمون: The Pennsylvania State University CiteSeerX Archives
المصدر: http://arxiv.org/pdf/nlin/0006017v1.pdf.
سنة النشر: 2000
المجموعة: CiteSeerX
الوصف: We propose a picture of Wigner function scars as a sequence of concentric rings along a twodimensional surface inside a periodic orbit. This is verified for a two-dimensional plane that contains a classical orbit of a Hamiltonian system with two degrees of freedom. The orbit is hyperbolic and the classical Hamiltonian is “softly chaotic ” at the energies considered. The stationary wave functions are the familiar mixture of scarred and random waves, but the spectral average of the Wigner functions in part of the plane is nearly that of a harmonic oscillator and individual states are also remarkably regular. These results are interpreted in terms of the semiclassical picture of chords and centres, which leads to a qualitative explanation of the interference effects that are manifest in the other region of the plane. The qualitative picture is robust with respect to a canonical transformation that bends the orbit plane. PACS numbers: 03.65.Sq, 05.45.+b Sixteen years have passed since Heller [1] detected scars of periodic orbit in individual eigenfunctions of chaotic systems. Explanations in terms of wave packets [1] or the semiclassical Green function [2,12] do predict an enhancement
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.235.3728; http://arxiv.org/pdf/nlin/0006017v1.pdf
الاتاحة: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.235.3728
http://arxiv.org/pdf/nlin/0006017v1.pdf
Rights: Metadata may be used without restrictions as long as the oai identifier remains attached to it.
رقم الانضمام: edsbas.A753376E
قاعدة البيانات: BASE