Academic Journal

On Abel's problem and Gauss congruences

التفاصيل البيبلوغرافية
العنوان: On Abel's problem and Gauss congruences
المؤلفون: Delaygue, Eric, Rivoal, Tanguy
المساهمون: Institut Camille Jordan (ICJ), École Centrale de Lyon (ECL), Université de Lyon-Université de Lyon-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS), Combinatoire, théorie des nombres (CTN), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Jean Monnet - Saint-Étienne (UJM)-Centre National de la Recherche Scientifique (CNRS)-École Centrale de Lyon (ECL), Institut Fourier (IF), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), ANR-19-CE40-0018,DeRerumNatura,Décider l'irrationalité et la transcendance(2019), European Project: 648132,H2020,ERC-2014-CoG,ANT(2015)
المصدر: ISSN: 1073-7928.
بيانات النشر: CCSD
Oxford University Press (OUP)
سنة النشر: 2024
المجموعة: Université Jean Monnet – Saint-Etienne: HAL
مصطلحات موضوعية: [MATH.MATH-NT]Mathematics [math]/Number Theory [math.NT], [MATH.MATH-CA]Mathematics [math]/Classical Analysis and ODEs [math.CA]
الوصف: International audience ; A classical problem due to Abel is to determine if a differential equation $y'=\eta y$ admits a non-trivial solution $y$ algebraic over $\mathbb C(x)$ when $\eta$ is a given algebraic function over $\mathbb C(x)$. Risch designed an algorithm that, given $\eta$, determines whether there exists an algebraic solution or not. In this paper, we adopt a different point of view when $\eta$ admits a Puiseux expansion with {\em rational} coefficients at some point in $\mathbb C\cup \{\infty\}$, which can be assumed to be 0 without loss of generality. We prove the following arithmetic characterization: there exists a non-trivial algebraic solution of $y'=\eta y$ if and only if the coefficients of the Puiseux expansion of $x\eta(x)$ at $0$ satisfy Gauss congruences for almost all prime numbers. We then apply our criterion to hypergeometric series: we completely determine the equations $y'=\eta y$ with an algebraic solution when $x\eta(x)$ is an algebraic hypergeometric series with rational parameters, and this enables us to prove a prediction Golyshev made using the theory of motives. We also present three other applications, in particular to diagonals of rational fractions and to directed two-dimensional walks.
نوع الوثيقة: article in journal/newspaper
اللغة: English
Relation: info:eu-repo/grantAgreement//648132/EU/Automata in Number Theory/ANT
DOI: 10.1093/imrn/rnad229
الاتاحة: https://hal.science/hal-03772016
https://hal.science/hal-03772016v2/document
https://hal.science/hal-03772016v2/file/abelgauss.pdf
https://doi.org/10.1093/imrn/rnad229
Rights: info:eu-repo/semantics/OpenAccess
رقم الانضمام: edsbas.A696144F
قاعدة البيانات: BASE