Multivalued Hamiltonian Systems with Multivalued Dissipation: Analysis of the Backward-Euler Discretisation

التفاصيل البيبلوغرافية
العنوان: Multivalued Hamiltonian Systems with Multivalued Dissipation: Analysis of the Backward-Euler Discretisation
المؤلفون: Castaños, Fernando, Miranda-Villatoro, Felix, A, Brogliato, Bernard
المساهمون: Centro de Investigacion y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV), Modélisation, simulation et commande des systèmes dynamiques non lisses (TRIPOP), Inria Grenoble - Rhône-Alpes, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire Jean Kuntzmann (LJK), Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP), Université Grenoble Alpes (UGA)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP), Université Grenoble Alpes (UGA), Financement professeurs visiteurs INRIA Grenoble et LJK.
المصدر: https://inria.hal.science/hal-04625231 ; 2024.
بيانات النشر: CCSD
سنة النشر: 2024
المجموعة: Université Grenoble Alpes: HAL
مصطلحات موضوعية: Hamiltonian systems, differential inclusions, backward Euler time-discretisation, Lyapunov stability, twisting algorithm, super-twisting algorithm, [INFO.INFO-AU]Computer Science [cs]/Automatic Control Engineering
الوصف: This article is mainly concerned with the time-discretisation of multivalued Hamiltonian systems with multivalued dissipation, a special class of differential inclusions. Two classes of set-valued Hamiltonian systems are considered, depending on the dissipation function being position or momentum dependent. The backward-Euler discretisation is analyzed in both cases: well-posedness of the generalized equation obtained after discretisation is proved, then stability of fixed-points is tackled. The well-known sliding-mode twisting and super-twisting algorithms, as well as an example from Contact Mechanics, illustrate the theoretical developments.
نوع الوثيقة: report
اللغة: English
الاتاحة: https://inria.hal.science/hal-04625231
https://inria.hal.science/hal-04625231v1/document
https://inria.hal.science/hal-04625231v1/file/Hamiltonian.pdf
Rights: http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
رقم الانضمام: edsbas.A29D5A32
قاعدة البيانات: BASE