Academic Journal

Medical image editing in the latent space of Generative Adversarial Networks

التفاصيل البيبلوغرافية
العنوان: Medical image editing in the latent space of Generative Adversarial Networks
المؤلفون: Fernández, Rubén, Rosado Rodrigo, Pilar, Vegas Lozano, Esteban, Reverter Comes, Ferran
المصدر: Articles publicats en revistes (Genètica, Microbiologia i Estadística)
بيانات النشر: Elsevier B.V.
سنة النشر: 2021
المجموعة: Dipòsit Digital de la Universitat de Barcelona
مصطلحات موضوعية: Intel·ligència artificial en medicina, Aprenentatge automàtic, Tècniques histològiques, Imatges mèdiques, Medical artificial intelligence, Machine learning, Histological techniques, Imaging systems in medicine
الوصف: We consider a set of arithmetic operations in the latent space of Generative Adversarial Networks (GANs) to edit histopathological images. We analyze thousands of image patches from whole-slide images of breast cancer metastases in histological lymph node sections. Image files were downloaded from the pathology contests CAMELYON 16 and 17. We show that widely known architectures, such as: Deep Convolutional Generative Adversarial Networks (DCGAN) and Conditional Deep Convolutional Generative Adversarial Networks (cDCGAN), allow image editing using semantic concepts that represent underlying visual patterns in histopathological images, expanding GAN's well-known capabilities in medical image editing. We computed the Grad-cam heatmap of real positive images and of generated positive images, validating that the highlighted features both in the real and synthetic images match. We also show that GANs can be used to generate quality images, making GANs a valuable resource for augmenting small medical imaging datasets.
نوع الوثيقة: article in journal/newspaper
وصف الملف: 12 p.; application/pdf
اللغة: English
تدمد: 2666-5212
Relation: Reproducció del document publicat a: https://doi.org/10.1016/j.ibmed.2021.100040; Intelligence-Based Medicine, 2021, vol. 5; https://doi.org/10.1016/j.ibmed.2021.100040; http://hdl.handle.net/2445/194902; 713572
الاتاحة: http://hdl.handle.net/2445/194902
Rights: cc-by (c) Fernández, Rubén et al., 2021 ; https://creativecommons.org/licenses/by/4.0/ ; info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.9DFE7B42
قاعدة البيانات: BASE