The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation

التفاصيل البيبلوغرافية
العنوان: The Unbalanced Gromov Wasserstein Distance: Conic Formulation and Relaxation
المؤلفون: Séjourné, Thibault, Vialard, François-Xavier, Peyré, Gabriel
المساهمون: Laboratoire d'Informatique Gaspard-Monge (LIGM), École nationale des ponts et chaussées (ENPC)-Centre National de la Recherche Scientifique (CNRS)-Université Gustave Eiffel
المصدر: NeurIPS ; https://hal.science/hal-04435914 ; NeurIPS, 2021, Virtual conference, France. ⟨10.48550/arXiv.2009.04266⟩
بيانات النشر: CCSD
arXiv
سنة النشر: 2021
مصطلحات موضوعية: Optimization and Control (math.OC), Machine Learning (stat.ML), FOS: Mathematics, FOS: Computer and information sciences, [MATH]Mathematics [math]
جغرافية الموضوع: Virtual conference, France
Time: Virtual conference, France
الوصف: International audience ; Comparing metric measure spaces (i.e. a metric space endowed with aprobability distribution) is at the heart of many machine learning problems. The most popular distance between such metric measure spaces is theGromov-Wasserstein (GW) distance, which is the solution of a quadratic assignment problem. The GW distance is however limited to the comparison of metric measure spaces endowed with a probability distribution. To alleviate this issue, we introduce two Unbalanced Gromov-Wasserstein formulations: a distance and a more tractable upper-bounding relaxation.They both allow the comparison of metric spaces equipped with arbitrary positive measures up to isometries. The first formulation is a positive and definite divergence based on a relaxation of the mass conservation constraint using a novel type of quadratically-homogeneous divergence. This divergence works hand in hand with the entropic regularization approach which is popular to solve large scale optimal transport problems. We show that the underlying non-convex optimization problem can be efficiently tackled using a highly parallelizable and GPU-friendly iterative scheme. The second formulation is a distance between mm-spaces up to isometries based on a conic lifting. Lastly, we provide numerical experiments onsynthetic examples and domain adaptation data with a Positive-Unlabeled learning task to highlight the salient features of the unbalanced divergence and its potential applications in ML.
نوع الوثيقة: conference object
اللغة: English
DOI: 10.48550/arXiv.2009.04266
الاتاحة: https://hal.science/hal-04435914
https://doi.org/10.48550/arXiv.2009.04266
رقم الانضمام: edsbas.9C096FF0
قاعدة البيانات: BASE
الوصف
DOI:10.48550/arXiv.2009.04266