Academic Journal
A construction of Frobenius manifolds from stability conditions
العنوان: | A construction of Frobenius manifolds from stability conditions |
---|---|
المؤلفون: | Anna Barbieri, Tom Sutherland, Jacopo Stoppa |
المساهمون: | A. Barbieri, T. Sutherland, J. Stoppa |
بيانات النشر: | Wiley |
سنة النشر: | 2019 |
المجموعة: | The University of Milan: Archivio Istituzionale della Ricerca (AIR) |
مصطلحات موضوعية: | Settore MAT/03 - Geometria |
الوصف: | A finite quiver Q without loops or 2-cycles defines a CY3 triangulated category D(Q) and a finite heart A(Q)subset of D(Q). We show that if Q satisfies some (strong) conditions, then the space of stability conditions Stab(A(Q)) supported on this heart admits a natural family of semisimple Frobenius manifold structures, constructed using the invariants counting semistable objects in D(Q). In the case of An evaluating the family at a special point, we recover a branch of the Saito Frobenius structure of the An singularity y2=xn+1. We give examples where applying the construction to each mutation of Q and evaluating the families at a special point yields a different branch of the maximal analytic continuation of the same semisimple Frobenius manifold. In particular, we check that this holds in the case of An, n <= 5. |
نوع الوثيقة: | article in journal/newspaper |
اللغة: | English |
Relation: | info:eu-repo/semantics/altIdentifier/wos/WOS:000470014700002; volume:118; issue:6; firstpage:1328; lastpage:1366; numberofpages:39; journal:PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY; http://hdl.handle.net/2434/791165; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85057028483 |
DOI: | 10.1112/plms.12217 |
الاتاحة: | http://hdl.handle.net/2434/791165 https://doi.org/10.1112/plms.12217 |
Rights: | info:eu-repo/semantics/openAccess |
رقم الانضمام: | edsbas.9AE9A9EE |
قاعدة البيانات: | BASE |
DOI: | 10.1112/plms.12217 |
---|