Academic Journal

A construction of Frobenius manifolds from stability conditions

التفاصيل البيبلوغرافية
العنوان: A construction of Frobenius manifolds from stability conditions
المؤلفون: Anna Barbieri, Tom Sutherland, Jacopo Stoppa
المساهمون: A. Barbieri, T. Sutherland, J. Stoppa
بيانات النشر: Wiley
سنة النشر: 2019
المجموعة: The University of Milan: Archivio Istituzionale della Ricerca (AIR)
مصطلحات موضوعية: Settore MAT/03 - Geometria
الوصف: A finite quiver Q without loops or 2-cycles defines a CY3 triangulated category D(Q) and a finite heart A(Q)subset of D(Q). We show that if Q satisfies some (strong) conditions, then the space of stability conditions Stab(A(Q)) supported on this heart admits a natural family of semisimple Frobenius manifold structures, constructed using the invariants counting semistable objects in D(Q). In the case of An evaluating the family at a special point, we recover a branch of the Saito Frobenius structure of the An singularity y2=xn+1. We give examples where applying the construction to each mutation of Q and evaluating the families at a special point yields a different branch of the maximal analytic continuation of the same semisimple Frobenius manifold. In particular, we check that this holds in the case of An, n <= 5.
نوع الوثيقة: article in journal/newspaper
اللغة: English
Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000470014700002; volume:118; issue:6; firstpage:1328; lastpage:1366; numberofpages:39; journal:PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY; http://hdl.handle.net/2434/791165; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85057028483
DOI: 10.1112/plms.12217
الاتاحة: http://hdl.handle.net/2434/791165
https://doi.org/10.1112/plms.12217
Rights: info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.9AE9A9EE
قاعدة البيانات: BASE