Research on GA-RBF Optimization Algorithm in the Prediction of Yield Loss of Maize Diseases and Pests

التفاصيل البيبلوغرافية
العنوان: Research on GA-RBF Optimization Algorithm in the Prediction of Yield Loss of Maize Diseases and Pests
المؤلفون: Chen, Guifen, Wang, Dongxue, Zhao, Shan, Fu, Siwei
المساهمون: School of Information Technology, Jilin Normal University, Daoliang Li, TC 5, WG 5,14
المصدر: IFIP Advances in Information and Communication Technology ; 10th International Conference on Computer and Computing Technologies in Agriculture (CCTA) ; https://inria.hal.science/hal-02179963 ; 10th International Conference on Computer and Computing Technologies in Agriculture (CCTA), Oct 2016, Dongying, China. pp.257-267, ⟨10.1007/978-3-030-06155-5_25⟩
بيانات النشر: HAL CCSD
Springer International Publishing
سنة النشر: 2016
مصطلحات موضوعية: Genetic algorithm, RBF neural network, fusion algorithm, maize diseases and pests, yield loss predict, [INFO]Computer Science [cs]
جغرافية الموضوع: Dongying, China
الوصف: International audience ; In view of the high complexity and nonlinearity of crop pests and diseases, using the traditional BP network and RBF network model method to predict is pretty difficult. And the prediction accuracy is low. Also the effect is not ideal when the sample size is small and the noise is more, therefore, this article presents a fusion optimization algorithm based on genetic-algorithm (GA) and radial basis function neural network (RBF). By unified coding the data center of RBF neural network and its corresponding expansion constant and weight, strengthened the cooperation between the hidden and output layer, furthermore using the functional characteristics of global search using genetic algorithm to obtain the optimal model of yield loss, finally predict on yield loss of maize diseases and pests. By making simulation test data of the National 863 project demonstration area - 13 village, Gong’ peng town in Jilin province Yu’shu County, the experimental results show that: After using the GA to optimize the RBF in the network’s structure and approximation has obvious improvement and enhancement, can effectively reflect the fluctuation characteristics of maize diseases and pests, has been widely application prospect in the agricultural field.
نوع الوثيقة: conference object
اللغة: English
Relation: hal-02179963; https://inria.hal.science/hal-02179963; https://inria.hal.science/hal-02179963/document; https://inria.hal.science/hal-02179963/file/478221_1_En_25_Chapter.pdf
DOI: 10.1007/978-3-030-06155-5_25
الاتاحة: https://inria.hal.science/hal-02179963
https://inria.hal.science/hal-02179963/document
https://inria.hal.science/hal-02179963/file/478221_1_En_25_Chapter.pdf
https://doi.org/10.1007/978-3-030-06155-5_25
Rights: http://creativecommons.org/licenses/by/ ; info:eu-repo/semantics/OpenAccess
رقم الانضمام: edsbas.9884F661
قاعدة البيانات: BASE
الوصف
DOI:10.1007/978-3-030-06155-5_25