Academic Journal

Incremental Singular Value Decomposition Algorithms for Highly Scalable Recommender Systems

التفاصيل البيبلوغرافية
العنوان: Incremental Singular Value Decomposition Algorithms for Highly Scalable Recommender Systems
المؤلفون: Badrul Sarwar, George Karypis, Joseph Konstan, John Riedl
المساهمون: The Pennsylvania State University CiteSeerX Archives
المصدر: http://www.grouplens.org/papers/pdf/sarwar_SVD.pdf.
سنة النشر: 2002
المجموعة: CiteSeerX
الوصف: We investigate th use of dimensionality reduction to improve th e performance for a new class of data analysis software called "recommender systems". Recommender systems apply knowledge discovery tech:N4fl4 to th problem of making personalized product recommendations during a live customer interaction. T h tremendous growth of customers and products in recent years poses some key ch]4N]C:5 for recommender systems. Th1F are:producingh igh quality recommendations and performing many recommendations per second for millions of customers and products. Singular Value Decomposition(SVD)-based recommendation algorith0 can quickly produceh igh quality recommendations, buth s to undergo very expensive matrix factorization steps. Inth] paper, we propose and experimentally validate a tech nique th ath as th e potential to incrementally build SVD-based models and promises to maketh recommender systemshm h ly scalable.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.7894; http://www.grouplens.org/papers/pdf/sarwar_SVD.pdf
الاتاحة: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.3.7894
http://www.grouplens.org/papers/pdf/sarwar_SVD.pdf
Rights: Metadata may be used without restrictions as long as the oai identifier remains attached to it.
رقم الانضمام: edsbas.985D6CDB
قاعدة البيانات: BASE