Academic Journal

Automated Discovery of Anomalous Features in Ultralarge Planetary Remote-Sensing Datasets Using Variational Autoencoders

التفاصيل البيبلوغرافية
العنوان: Automated Discovery of Anomalous Features in Ultralarge Planetary Remote-Sensing Datasets Using Variational Autoencoders
المؤلفون: Lesnikowski, Adam, Bickel, Valentin Tertius, Angerhausen, Daniel
المصدر: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17
بيانات النشر: IEEE
سنة النشر: 2024
المجموعة: ETH Zürich Research Collection
مصطلحات موضوعية: Anomaly detection, big data, deep learning, generative models, Lunar Reconnaissance Orbiter (LRO), technosignatures
الوصف: The NASA Lunar Reconnaissance Orbiter (LRO) has returned petabytes of lunar high spatial resolution surface imagery over the past decade, impractical for humans to fully review manually. Here, we develop an automated method using a deep generative visual model that rapidly retrieves scientifically interesting examples of LRO surface imagery representing the first planetary image anomaly detector. We give quantitative experimental evidence that our method preferentially retrieves anomalous samples such as notable geological features and known human landing and spacecraft crash sites. Our method addresses a major capability gap in planetary science and presents a novel way to unlock insights hidden in ever-increasing remote-sensing data archives, with numerous applications to other science domains. ; ISSN:1939-1404 ; ISSN:2151-1535
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/application/pdf
اللغة: English
Relation: info:eu-repo/semantics/altIdentifier/wos/001188473800018; info:eu-repo/grantAgreement/SNF/NCCR (NFS)/182901; info:eu-repo/grantAgreement/SNF/NCCR (NFS)/205606; http://hdl.handle.net/20.500.11850/668656
DOI: 10.3929/ethz-b-000668656
الاتاحة: https://hdl.handle.net/20.500.11850/668656
https://doi.org/10.3929/ethz-b-000668656
Rights: info:eu-repo/semantics/openAccess ; http://creativecommons.org/licenses/by-nc-nd/4.0/ ; Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International
رقم الانضمام: edsbas.971FC4E0
قاعدة البيانات: BASE
الوصف
DOI:10.3929/ethz-b-000668656