Dissertation/ Thesis

Particle and data-driven approaches for reactive micrometric processes : application to CO2 mineral storage with uncertainty quantification. ; Méthodes particulaires et approches supervisées par les données pour les processus micrométriques réactifs : application au stockage minéral du CO2 avec quantification des incertitudes.

التفاصيل البيبلوغرافية
العنوان: Particle and data-driven approaches for reactive micrometric processes : application to CO2 mineral storage with uncertainty quantification. ; Méthodes particulaires et approches supervisées par les données pour les processus micrométriques réactifs : application au stockage minéral du CO2 avec quantification des incertitudes.
المؤلفون: Perez, Sarah
المساهمون: Laboratoire de Mathématiques et de leurs Applications Pau (LMAP), Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS), Université de Pau et des Pays de l'Adour, Philippe Poncet
المصدر: https://theses.hal.science/tel-04415185 ; Numerical Analysis [math.NA]. Université de Pau et des Pays de l'Adour, 2023. English. ⟨NNT : 2023PAUU3007⟩.
بيانات النشر: CCSD
سنة النشر: 2023
المجموعة: HAL e2s UPPA (Université de Pau et des Pays de l'Adour)
مصطلحات موضوعية: Pore scale modelling, Reactive flows, Porous media, Uncertainty quantification, Inverse problems, Artificial Intelligence, Modélisation à l'échelle des pores, Ecoulements réactifs, Milieux poreux, Quantification des incertitudes, Problèmes inverses, Intelligence Artificielle, [MATH.MATH-NA]Mathematics [math]/Numerical Analysis [math.NA]
الوصف: Studying reactive flows in porous media is essential to manage the geochemical effects of CO2 capture and storage in natural underground reservoirs. Through homogenization of the sub-micrometer porous medium and appropriate modeling, one can simulate the reactive processes occurring at the pore scale and predict their impact on the macro-scale properties, namely the macro-porosity and bulk permeability. Geochemical processes enable understanding of the mineral storage mechanisms, CO2 interactions with the aquifer structure, and query reservoir safety. They encompass CO2 mineral trapping due to carbonate precipitation and crystallization or dissolution of the surrounding porous environment associated with flow and transport mechanisms.Direct Numerical Simulation (DNS) of reactive processes in intricate pore space geometries is challenging, as this requires efficient numerical methods that withstand multi-scale effects and strongly coupled Partial Differential Equation (PDE) systems. We adopt a semi-Lagrangian approach combining a particle description of the chemical transport equations with Eulerian formulation for the hydrodynamics. Flow modeling relies on a micro-continuum description of the medium, combined with a two-scale Darcy-Brinkman-Stokes formulation. The implementation benefits from an operator-splitting strategy and is provided in a hybrid CPU-GPU context. The numerical framework is improved to incorporate particle-based approximation on GPU devices of heterogeneous diffusion operators, which stems from Archie's law. This DNS method is used to investigate the effects of CO2 mineral trapping through a novel two-step model for calcite crystallization.However, ensuring reliable calibration of the PDE model parameters is crucial to provide suitable evolution of the macro-scale properties due to geochemical processes. This sometimes requires intuitive tuning of the model parameters to match laboratory experiments, especially considering the wide discrepancies observed in mineral reactivity and kinetic ...
نوع الوثيقة: doctoral or postdoctoral thesis
اللغة: English
Relation: NNT: 2023PAUU3007
الاتاحة: https://theses.hal.science/tel-04415185
https://theses.hal.science/tel-04415185v1/document
https://theses.hal.science/tel-04415185v1/file/thesissarahperez.pdf
Rights: info:eu-repo/semantics/OpenAccess
رقم الانضمام: edsbas.9714957F
قاعدة البيانات: BASE