Academic Journal

Identifying critical building-oriented features in city-block-level building energy consumption : a data-driven machine learning approach

التفاصيل البيبلوغرافية
العنوان: Identifying critical building-oriented features in city-block-level building energy consumption : a data-driven machine learning approach
المؤلفون: Ye, Z, Cheng, K, Hsu, SC, Wei, HH, Cheung, CM
المساهمون: Department of Civil and Environmental Engineering, Department of Building and Real Estate
بيانات النشر: Pergamon Press
سنة النشر: 2023
المجموعة: Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR)
مصطلحات موضوعية: Building energy modeling, Building-oriented features, City-block level, Feature importance, Random forest
الوصف: 202203 bcfc ; Accepted Manuscript ; Others ; Guangdong Science and Technology Department ; Published ; Green (AAM)
نوع الوثيقة: article in journal/newspaper
اللغة: English
تدمد: 0306-2619
1872-9118
Relation: http://hdl.handle.net/10397/97350; 301; 2-s2.0-85111495917; 117453; CEE-0098
DOI: 10.1016/j.apenergy.2021.117453
الاتاحة: http://hdl.handle.net/10397/97350
https://doi.org/10.1016/j.apenergy.2021.117453
Rights: © 2021 Elsevier Ltd. All rights reserved. ; © 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. ; The following publication Ye, Z., et al. (2021). "Identifying critical building-oriented features in city-block-level building energy consumption: A data-driven machine learning approach." Applied Energy 301: 117453 is available at https://dx.doi.org/10.1016/j.apenergy.2021.117453.
رقم الانضمام: edsbas.96AE1A8E
قاعدة البيانات: BASE
الوصف
تدمد:03062619
18729118
DOI:10.1016/j.apenergy.2021.117453