Academic Journal
Identifying critical building-oriented features in city-block-level building energy consumption : a data-driven machine learning approach
العنوان: | Identifying critical building-oriented features in city-block-level building energy consumption : a data-driven machine learning approach |
---|---|
المؤلفون: | Ye, Z, Cheng, K, Hsu, SC, Wei, HH, Cheung, CM |
المساهمون: | Department of Civil and Environmental Engineering, Department of Building and Real Estate |
بيانات النشر: | Pergamon Press |
سنة النشر: | 2023 |
المجموعة: | Hong Kong Polytechnic University: PolyU Institutional Repository (PolyU IR) |
مصطلحات موضوعية: | Building energy modeling, Building-oriented features, City-block level, Feature importance, Random forest |
الوصف: | 202203 bcfc ; Accepted Manuscript ; Others ; Guangdong Science and Technology Department ; Published ; Green (AAM) |
نوع الوثيقة: | article in journal/newspaper |
اللغة: | English |
تدمد: | 0306-2619 1872-9118 |
Relation: | http://hdl.handle.net/10397/97350; 301; 2-s2.0-85111495917; 117453; CEE-0098 |
DOI: | 10.1016/j.apenergy.2021.117453 |
الاتاحة: | http://hdl.handle.net/10397/97350 https://doi.org/10.1016/j.apenergy.2021.117453 |
Rights: | © 2021 Elsevier Ltd. All rights reserved. ; © 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/. ; The following publication Ye, Z., et al. (2021). "Identifying critical building-oriented features in city-block-level building energy consumption: A data-driven machine learning approach." Applied Energy 301: 117453 is available at https://dx.doi.org/10.1016/j.apenergy.2021.117453. |
رقم الانضمام: | edsbas.96AE1A8E |
قاعدة البيانات: | BASE |
تدمد: | 03062619 18729118 |
---|---|
DOI: | 10.1016/j.apenergy.2021.117453 |