Academic Journal

An Associative Classifier based on Positive and Negative

التفاصيل البيبلوغرافية
العنوان: An Associative Classifier based on Positive and Negative
المؤلفون: Maria-Luiza Antonie, Osmar R. Zaïane
المساهمون: The Pennsylvania State University CiteSeerX Archives
المصدر: http://www.cs.ualberta.ca/~zaiane/postscript/dmkd04-1.pdf.
بيانات النشر: Press
سنة النشر: 2004
المجموعة: CiteSeerX
الوصف: Associative classifiers use association rules to associate attribute values with observed class labels. This model has been recently introduced in the literature and shows good promise. The proposals so far have only concentrated on, and di#er only in the way rules are ranked and selected in the model. We propose a new framework that uses di#erent types of association rules, positive and negative. Negative association rules of interest are rules that either associate negations of attribute values to classes or negatively associate attribute values to classes. In this paper we propose a new algorithm to discover at the same time positive and negative association rules. We introduce a new associative classifier that takes advantage of these two types of rules. Moreover, we present a new way to prune irrelevant classification rules using a correlation coe#cient without jeopardizing the accuracy of our associative classifier model. Our preliminary results with UCI datasets are very encouraging.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.2733; http://www.cs.ualberta.ca/~zaiane/postscript/dmkd04-1.pdf
الاتاحة: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.10.2733
http://www.cs.ualberta.ca/~zaiane/postscript/dmkd04-1.pdf
Rights: Metadata may be used without restrictions as long as the oai identifier remains attached to it.
رقم الانضمام: edsbas.959A0433
قاعدة البيانات: BASE