Bayesian Optimisation for Premise Selection in Automated Theorem Proving (Student Abstract).

التفاصيل البيبلوغرافية
العنوان: Bayesian Optimisation for Premise Selection in Automated Theorem Proving (Student Abstract).
المؤلفون: Slowik, Agnieszka, Mangla, Chaitanya, Jamnik, Mateja, Holden, Sean B, Paulson, Lawrence C
بيانات النشر: AAAI Press
Department of Computer Science And Technology
//www.aaai.org/Library/AAAI/aaai20contents.php
Proceedings of the AAAI Conference on Artificial Intelligence, 34(10)
سنة النشر: 2022
المجموعة: Apollo - University of Cambridge Repository
الوصف: Modern theorem provers utilise a wide array of heuristics to control the search space explosion, thereby requiring optimisation of a large set of parameters. An exhaustive search in this multi-dimensional parameter space is intractable in most cases, yet the performance of the provers is highly dependent on the parameter assignment. In this work, we introduce a principled probabilistic framework for heuristic optimisation in theorem provers. We present results using a heuristic for premise selection and the Archive of Formal Proofs (AFP) as a case study.
نوع الوثيقة: conference object
وصف الملف: application/pdf
اللغة: English
Relation: https://www.repository.cam.ac.uk/handle/1810/332827
DOI: 10.17863/CAM.80261
الاتاحة: https://www.repository.cam.ac.uk/handle/1810/332827
https://doi.org/10.17863/CAM.80261
Rights: Publisher's own licence
رقم الانضمام: edsbas.94D1ADAB
قاعدة البيانات: BASE