Bayesian Inference for the Intrinsic Dimension

التفاصيل البيبلوغرافية
العنوان: Bayesian Inference for the Intrinsic Dimension
المؤلفون: BRUTTI, Pierpaolo, LANTERI, ALESSANDRO, RICCIUTI, COSTANTINO
المساهمون: Editors: S. Cabras, T. Di Battista and W. Racugno, Brutti, Pierpaolo, Lanteri, Alessandro, Ricciuti, Costantino
بيانات النشر: CUEC Cooperativa Universitaria Editrice Cagliaritana
Cagliari
سنة النشر: 2014
المجموعة: Sapienza Università di Roma: CINECA IRIS
مصطلحات موضوعية: intrinsic dimension, intractable likelihood, composite marginal likelihood, bayesian inference
الوصف: In this work we propose a new Bayesian method for making in- ference on the intrinsic dimension of point cloud data sampled from a low– dimensional structure embedded in a high–dimensional ambient space. The basic ingredient of our Bayesian recipe is a composite marginal likelihood built under working independence assumptions, that was suggested by MacKay and Ghahramani [6] to improve on an earlier proposal based on local Poisson process approximations (see [5]). In order to get a posterior with approximately correct asymptotic behavior and curvature, we calibrate this pseudolikelihood as in [8] and then compare in simulated and real exam- ples a standard MCMC method against a variation of the default Bayesian framework described in [12].
نوع الوثيقة: conference object
وصف الملف: ELETTRONICO
اللغة: English
Relation: info:eu-repo/semantics/altIdentifier/isbn/9788884678744; ispartofbook:47th SIS Scientific Meeting of the Italian Statistica Society; 47th SIS Scientific Meeting of the Italian Statistica Society; firstpage:1; lastpage:6; numberofpages:6; http://hdl.handle.net/11573/657342
الاتاحة: http://hdl.handle.net/11573/657342
Rights: info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.94406AAA
قاعدة البيانات: BASE