Conference
Bayesian Inference for the Intrinsic Dimension
العنوان: | Bayesian Inference for the Intrinsic Dimension |
---|---|
المؤلفون: | BRUTTI, Pierpaolo, LANTERI, ALESSANDRO, RICCIUTI, COSTANTINO |
المساهمون: | Editors: S. Cabras, T. Di Battista and W. Racugno, Brutti, Pierpaolo, Lanteri, Alessandro, Ricciuti, Costantino |
بيانات النشر: | CUEC Cooperativa Universitaria Editrice Cagliaritana Cagliari |
سنة النشر: | 2014 |
المجموعة: | Sapienza Università di Roma: CINECA IRIS |
مصطلحات موضوعية: | intrinsic dimension, intractable likelihood, composite marginal likelihood, bayesian inference |
الوصف: | In this work we propose a new Bayesian method for making in- ference on the intrinsic dimension of point cloud data sampled from a low– dimensional structure embedded in a high–dimensional ambient space. The basic ingredient of our Bayesian recipe is a composite marginal likelihood built under working independence assumptions, that was suggested by MacKay and Ghahramani [6] to improve on an earlier proposal based on local Poisson process approximations (see [5]). In order to get a posterior with approximately correct asymptotic behavior and curvature, we calibrate this pseudolikelihood as in [8] and then compare in simulated and real exam- ples a standard MCMC method against a variation of the default Bayesian framework described in [12]. |
نوع الوثيقة: | conference object |
وصف الملف: | ELETTRONICO |
اللغة: | English |
Relation: | info:eu-repo/semantics/altIdentifier/isbn/9788884678744; ispartofbook:47th SIS Scientific Meeting of the Italian Statistica Society; 47th SIS Scientific Meeting of the Italian Statistica Society; firstpage:1; lastpage:6; numberofpages:6; http://hdl.handle.net/11573/657342 |
الاتاحة: | http://hdl.handle.net/11573/657342 |
Rights: | info:eu-repo/semantics/openAccess |
رقم الانضمام: | edsbas.94406AAA |
قاعدة البيانات: | BASE |
الوصف غير متاح. |