Academic Journal

Orlicz spaces associated with a semi-finite von Neumann algebra

التفاصيل البيبلوغرافية
العنوان: Orlicz spaces associated with a semi-finite von Neumann algebra
المؤلفون: Ayupov, Sh. A., Chilin, V. I., Abdullaev, R. Z.
بيانات النشر: Charles University in Prague, Faculty of Mathematics and Physics
سنة النشر: 2012
المجموعة: DML-CZ (Czech Digital Mathematics Library)
مصطلحات موضوعية: keyword:Orlicz spaces, keyword:von Neumann algebra, keyword:weight, msc:46L51, msc:46L52
الوصف: summary:Let $M$ be a von Neumann algebra, let $\varphi$ be a weight on $M$ and let $\Phi$ be $N$-function satisfying the $(\delta_{2}, \Delta_{2})$-condition. In this paper we study Orlicz spaces, associated with $M$, $\varphi$ and $\Phi $.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
تدمد: 0010-2628
1213-7243
Relation: mr:MR3016423; reference:[1] Al-Rashed M.H.A., Zegarlinski B.: Noncommutative Orlicz spaces associated to a state.Studia Math. 180 (2007), 199–209. Zbl 1221.46065, MR 2314076; reference:[2] Brawn L.G., Kosaki H.: Jensen's inequality in semi-finite von Neumann algebras.J. Operator Theory 23 (1990), 3–19. MR 1054812; reference:[3] Fack T., Kosaki H.: Generalized $s$-number of $\tau$-measurable operators.Pacific J. Math. 123 (1986), 269–300. MR 0840845, 10.2140/pjm.1986.123.269; reference:[4] Krasnosel'sky M.F., Rutitskii Ya.B.: Convex Functions and Orlicz Spaces.Noordhoff, Groningen, 1961; (translated from the Russian). MR 0126722; reference:[5] Kunze W.: Noncommutative Orlicz spaces and generalized Arens algebras.Math. Nachr. 147 (1990), 123–138. Zbl 0746.46062, MR 1127316, 10.1002/mana.19901470114; reference:[6] Muratov M.A.: Non commutative Orlicz spaces.Dokl. Akad. Nauk UzSSR 6 (1978), 11–13. MR 0511082; reference:[7] Muratov M.A.: The Luxemburg norm in an Orlicz space of measurable operators.Dokl. Akad. Nauk UzSSR 1 (1979), 5–6. MR 0529172; reference:[8] Muratov M.A., Chilin V.I.: Algebras of measurable operators and locally measurable operators.Kyev. Institute of Math. Ukrainian Academy of Sciences, 69, 2007 (Russian).; reference:[9] Pedersen G., Takesaki M.: The Radon-Nikodym theorem for von Neumann algebras.Acta Math. 130 (1973), 53–87. Zbl 0262.46063, MR 0412827, 10.1007/BF02392262; reference:[10] Takesaki M.: Theory of Operator Algebras I.Springer, New York, 1979. Zbl 0990.46034, MR 0548728; reference:[11] Trunov N.V.: The $L_p$-spaces associated with a weight on a semi-finite von Neumann algebra.Constructive theory of functions and functional analysis, no. 3, pp. 88–93, Kazan. Gos. Univ., Kazan, 1981. MR 0652348; reference:[12] Trunov N.V.: On the theory of normal weights on von Neumann algebras.Izv. Vyssh. Uchebn. Zaved. Math. 8 1982, 61–70. Zbl 0521.46056, MR 0675719; reference:[13] Trunov N.V., Sherstnev A.N.: Introduction to the theory of noncommutative integration.N. Soviet Math., 37. Translation from Itogi Nauki i Tekhniki, Sovr. Probl. Math. 27 (1985), 167–190. Zbl 0616.46058, MR 0824264; reference:[14] Yeadon F.J.: Convergence of measurable operators.Proc. Cambridge Philos. Soc. 74 (1973), 257–268. Zbl 0272.46043, MR 0326411; reference:[15] Yeadon F.J.: Non-commutative $L^{p}$-spaces.Math. Proc. Cambridge Philos. Soc. 77 (1975), no. 1, 91–102. MR 0353008, 10.1017/S0305004100049434
الاتاحة: http://hdl.handle.net/10338.dmlcz/143187
Rights: access:Unrestricted ; rights:DML-CZ Czech Digital Mathematics Library, http://dml.cz/ ; rights:Institute of Mathematics AS CR, http://www.math.cas.cz/ ; conditionOfUse:http://dml.cz/use
رقم الانضمام: edsbas.925930A2
قاعدة البيانات: BASE