Academic Journal

Stochastic Computation of Barycentric Coordinates

التفاصيل البيبلوغرافية
العنوان: Stochastic Computation of Barycentric Coordinates
المؤلفون: de Goes, Fernando, Desbrun, Mathieu
المساهمون: Pixar Animation Studios, La Géometrie au Service du Numérique (GEOMERIX), Laboratoire d'informatique de l'École polytechnique Palaiseau (LIX), École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)-École polytechnique (X), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France, Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS), Département d'informatique de l'École polytechnique (X-DEP-INFO), Institut Polytechnique de Paris (IP Paris)-Institut Polytechnique de Paris (IP Paris)
المصدر: ISSN: 0730-0301.
بيانات النشر: HAL CCSD
Association for Computing Machinery
سنة النشر: 2024
مصطلحات موضوعية: cage interpolation, numerical integration, Monte Carlo methods, linear precision, barycentric coordinates, [INFO]Computer Science [cs], [INFO.INFO-GR]Computer Science [cs]/Graphics [cs.GR]
الوصف: International audience ; This paper presents a practical and general approach for computing barycentric coordinates through stochastic sampling. Our key insight is a reformulation of the kernel integral defining barycentric coordinates into a weighted least-squares minimization that enables Monte Carlo integration without sacrificing linear precision. Our method can thus compute barycentric coordinates directly at the points of interest, both inside and outside the cage, using just proximity queries to the cage such as closest points and ray intersections. As a result, we can evaluate barycentric coordinates for a large variety of cage representations (from quadrangulated surface meshes to parametric curves) seamlessly, bypassing any volumetric discretization or custom solves. To address the archetypal noise induced by sample-based estimates, we also introduce a denoising scheme tailored to barycentric coordinates. We demonstrate the efficiency and flexibility of our formulation by implementing a stochastic generation of harmonic coordinates, mean-value coordinates, and positive mean-value coordinates.
نوع الوثيقة: article in journal/newspaper
اللغة: English
DOI: 10.1145/3658131
الاتاحة: https://hal.science/hal-04706761
https://hal.science/hal-04706761v1/document
https://hal.science/hal-04706761v1/file/dGD24.pdf
https://doi.org/10.1145/3658131
Rights: http://hal.archives-ouvertes.fr/licences/copyright/ ; info:eu-repo/semantics/OpenAccess
رقم الانضمام: edsbas.8F8B8065
قاعدة البيانات: BASE