Academic Journal
Singularities of fractional Emden's equations via Caffarelli-Silvestre extension
العنوان: | Singularities of fractional Emden's equations via Caffarelli-Silvestre extension |
---|---|
المؤلفون: | Chen, Huyuan, Véron, Laurent |
المساهمون: | Jiangxi Normal University Nanchang, Institut Denis Poisson (IDP), Université d'Orléans (UO)-Université de Tours (UT)-Centre National de la Recherche Scientifique (CNRS) |
المصدر: | ISSN: 0022-0396. |
بيانات النشر: | HAL CCSD Elsevier |
سنة النشر: | 2023 |
المجموعة: | Université François-Rabelais de Tours: HAL |
مصطلحات موضوعية: | Lane-Emden-Fowler equation, Linear extension, Energy methods, Limit set, AMS Subject Classification: 35B40-35J60-35J70-45G05 Fractional Laplacian, Isolated singularity, [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] |
الوصف: | International audience ; We study the isolated singularities of functions satisfying (E) (−∆) s v±|v| p−1 v = 0 in Ω\{0}, v = 0 in R N \Ω, where 0 < s < 1, p > 1 and Ω is a bounded domain containing the origin. We use the Caffarelli-Silvestre extension to R + × R N. We emphasize the obtention of a priori estimates, analyse the set of self-similar solutions via energy methods to characterize the singularities. |
نوع الوثيقة: | article in journal/newspaper |
اللغة: | English |
Relation: | info:eu-repo/semantics/altIdentifier/arxiv/2206.04353; ARXIV: 2206.04353 |
DOI: | 10.1016/j.jde.2023.03.006 |
الاتاحة: | https://hal.science/hal-03689999 https://hal.science/hal-03689999v2/document https://hal.science/hal-03689999v2/file/Art18-F.pdf https://doi.org/10.1016/j.jde.2023.03.006 |
Rights: | info:eu-repo/semantics/OpenAccess |
رقم الانضمام: | edsbas.8DDB17CB |
قاعدة البيانات: | BASE |
DOI: | 10.1016/j.jde.2023.03.006 |
---|