Academic Journal
A scalable approach to T2-MRI colon segmentation
العنوان: | A scalable approach to T2-MRI colon segmentation |
---|---|
المؤلفون: | Orellana Bech, Bernat, Monclús Lahoya, Eva, Navazo Álvaro, Isabel, Brunet Crosa, Pere, Bendezú García, Álvaro, Azpiroz Vidaur, Fernando |
المساهمون: | Universitat Politècnica de Catalunya. Doctorat en Computació, Universitat Politècnica de Catalunya. Departament de Ciències de la Computació, Universitat Politècnica de Catalunya. ViRVIG - Grup de Recerca en Visualització, Realitat Virtual i Interacció Gràfica |
سنة النشر: | 2020 |
المجموعة: | Universitat Politècnica de Catalunya, BarcelonaTech: UPCommons - Global access to UPC knowledge |
مصطلحات موضوعية: | Àrees temàtiques de la UPC::Ciències de la salut, Àrees temàtiques de la UPC::Informàtica::Aplicacions de la informàtica, Algorithms, Imaging systems in medicine, Image processing, Medicine, Graph theory, Colon segmentation, MRI, Graph-cuts, Tubularity, Algorismes, Imatges mèdiques, Imatges -- Processament, Medicina, Grafs, Teoria de |
الوصف: | The study of the colonic volume is a procedure with strong relevance to gastroenterologists. Depending on the clinical protocols, the volume analysis has to be performed on MRI of the unprepared colon without contrast administration. In such circumstances, existing measurement procedures are cumbersome and time-consuming for the specialists. The algorithm presented in this paper permits a quasi-automatic segmentation of the unprepared colon on T2-weighted MRI scans. The segmentation algorithm is organized as a three-stage pipeline. In the first stage, a custom tubularity filter is run to detect colon candidate areas. The specialists provide a list of points along the colon trajectory, which are combined with tubularity information to calculate an estimation of the colon medial path. In the second stage, we delimit the region of interest by applying custom segmentation algorithms to detect colon neighboring regions and the fat capsule containing abdominal organs. Finally, within the reduced search space, segmentation is performed via 3D graph-cuts in a three-stage multigrid approach. Our algorithm was tested on MRI abdominal scans, including different acquisition resolutions, and its results were compared to the colon ground truth segmentations provided by the specialists. The experiments proved the accuracy, efficiency, and usability of the algorithm, while the variability of the scan resolutions contributed to demonstrate the computational scalability of the multigrid architecture. The system is fully applicable to the colon measurement clinical routine, being a substantial step towards a fully automated segmentation. ; Postprint (author's final draft) |
نوع الوثيقة: | article in journal/newspaper |
وصف الملف: | 21 p.; application/pdf |
اللغة: | English |
تدمد: | 1361-8415 |
Relation: | https://www.sciencedirect.com/science/article/abs/pii/S1361841520300621; Orellana, B. [et al.]. A scalable approach to T2-MRI colon segmentation. "Medical image analysis", 1 Juliol 2020, vol. 63, p. 1-21.; http://hdl.handle.net/2117/191365 |
DOI: | 10.1016/j.media.2020.101697 |
الاتاحة: | http://hdl.handle.net/2117/191365 https://doi.org/10.1016/j.media.2020.101697 |
Rights: | Attribution-NonCommercial-NoDerivs 3.0 Spain ; http://creativecommons.org/licenses/by-nc-nd/3.0/es/ ; Open Access |
رقم الانضمام: | edsbas.8C4B801 |
قاعدة البيانات: | BASE |
تدمد: | 13618415 |
---|---|
DOI: | 10.1016/j.media.2020.101697 |