Academic Journal

Avoiding prior–data conflict in regression models via mixture priors

التفاصيل البيبلوغرافية
العنوان: Avoiding prior–data conflict in regression models via mixture priors
المؤلفون: Egidi L., Pauli F., Torelli N.
المساهمون: Egidi, L., Pauli, F., Torelli, N.
سنة النشر: 2022
المجموعة: Università degli studi di Trieste: ArTS (Archivio della ricerca di Trieste)
مصطلحات موضوعية: Bayesian model, generative model, mixture prior, prior–data conflict, regression
الوصف: The Bayesian model consists of the prior–likelihood pair. A prior–data conflict arises whenever the prior allocates most of its mass to regions of the parameter space where the likelihood is relatively low. Once a prior–data conflict is diagnosed, what to do next is a hard question to answer. We propose an automatic prior elicitation that involves a two-component mixture of a diffuse and an informative prior distribution that favours the first component if a conflict emerges. Using various examples, we show that these mixture priors can be useful in regression models as a device for regularizing the estimates and retrieving useful inferential conclusions.
نوع الوثيقة: article in journal/newspaper
وصف الملف: ELETTRONICO
اللغة: English
Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000678670000001; volume:50/2022; issue:2; firstpage:491; lastpage:510; numberofpages:20; journal:CANADIAN JOURNAL OF STATISTICS; http://hdl.handle.net/11368/2993048; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85111526171
DOI: 10.1002/cjs.11637
الاتاحة: http://hdl.handle.net/11368/2993048
https://doi.org/10.1002/cjs.11637
https://onlinelibrary.wiley.com/doi/10.1002/cjs.11637
Rights: info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.8B328A5F
قاعدة البيانات: BASE