Academic Journal

Non-crossing shortest paths lengths in planar graphs in linear time

التفاصيل البيبلوغرافية
العنوان: Non-crossing shortest paths lengths in planar graphs in linear time
المؤلفون: Balzotti, Lorenzo, Franciosa, Paolo G.
المساهمون: Balzotti, Lorenzo, Franciosa, Paolo G.
بيانات النشر: Elsevier
سنة النشر: 2024
المجموعة: Sapienza Università di Roma: CINECA IRIS
مصطلحات موضوعية: shortest path, undirected planar graph, non-crossing paths
الوصف: Given a plane graph it is known how to compute the union of non-crossing shortest paths. These algorithms do not allow neither to list each single shortest path nor to compute length of shortest paths. Given the union of non-crossing shortest paths, we introduce the concept of shortcuts that allows us to establish whether a path is a shortest path by checking local properties on faces of the graph. By using shortcuts we can compute the length of each shortest path, given their union, in total linear time, and we can list each shortest path p in O(max{l,l log log kl}), where l is the number of edges in p and k the number of shortest paths.
نوع الوثيقة: article in journal/newspaper
اللغة: English
Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:001145058700001; volume:346; issue:March 2024; firstpage:183; lastpage:191; numberofpages:9; journal:DISCRETE APPLIED MATHEMATICS; https://hdl.handle.net/11573/1703578; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85180968575
DOI: 10.1016/j.dam.2023.12.011
الاتاحة: https://hdl.handle.net/11573/1703578
https://doi.org/10.1016/j.dam.2023.12.011
Rights: info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.8A6D8068
قاعدة البيانات: BASE
الوصف
DOI:10.1016/j.dam.2023.12.011