KSD Aggregated Goodness-of-fit Test

التفاصيل البيبلوغرافية
العنوان: KSD Aggregated Goodness-of-fit Test
المؤلفون: Schrab, Antonin, Guedj, Benjamin, Gretton, Arthur
المساهمون: Gatsby Computational Neuroscience Unit, Department of Computer science University College of London UCL-CS, The Inria London Programme Inria-London, MOdel for Data Analysis and Learning MODAL, The Alan Turing Institute
سنة النشر: 2025
المجموعة: LillOA (Lille Open Archive - Université de Lille)
الوصف: We investigate properties of goodness-of-fit tests based on the Kernel Stein Discrepancy (KSD). We introduce a strategy to construct a test, called KSDAGG, which aggregates multiple tests with different kernels. KSDAGG avoids splitting the data to perform kernel selection (which leads to a loss in test power), and rather maximises the test power over a collection of kernels. We provide theoretical guarantees on the power of KSDAGG: we show it achieves the smallest uniform separation rate of the collection, up to a logarithmic term. KSDAGG can be computed exactly in practice as it relies either on a parametric bootstrap or on a wild bootstrap to estimate the quantiles and the level corrections. In particular, for the crucial choice of bandwidth of a fixed kernel, it avoids resorting to arbitrary heuristics (such as median or standard deviation) or to data splitting. We find on both synthetic and real-world data that KSDAGG outperforms other state-of-the-art adaptive KSDbased goodness-of-fit testing procedures.
نوع الوثيقة: other/unknown material
وصف الملف: application/octet-stream
اللغة: English
Relation: http://hdl.handle.net/20.500.12210/122447
الاتاحة: https://hdl.handle.net/20.500.12210/122447
Rights: info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.899C49F7
قاعدة البيانات: BASE