Academic Journal

A Benchmark Study of Graph Models for Molecular Acute Toxicity Prediction

التفاصيل البيبلوغرافية
العنوان: A Benchmark Study of Graph Models for Molecular Acute Toxicity Prediction
المؤلفون: Rajas Ketkar, Yue Liu, Hengji Wang, Hao Tian
المصدر: International Journal of Molecular Sciences; Volume 24; Issue 15; Pages: 11966
بيانات النشر: Multidisciplinary Digital Publishing Institute
سنة النشر: 2023
المجموعة: MDPI Open Access Publishing
مصطلحات موضوعية: graph neural network, acute toxicity, attentive FP, machine learning
جغرافية الموضوع: agris
الوصف: With the wide usage of organic compounds, the assessment of their acute toxicity has drawn great attention to reduce animal testing and human labor. The development of graph models provides new opportunities for acute toxicity prediction. In this study, five graph models (message-passing neural network, graph convolution network, graph attention network, path-augmented graph transformer network, and Attentive FP) were applied on four toxicity tasks (fish, Daphnia magna, Tetrahymena pyriformis, and Vibrio fischeri). With the lowest prediction error, Attentive FP was reported to have the best performance in all four tasks. Moreover, the attention weights of the Attentive FP model helped to construct atomic heatmaps and provide good explainability.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: Molecular Informatics; https://dx.doi.org/10.3390/ijms241511966
DOI: 10.3390/ijms241511966
الاتاحة: https://doi.org/10.3390/ijms241511966
Rights: https://creativecommons.org/licenses/by/4.0/
رقم الانضمام: edsbas.8839129C
قاعدة البيانات: BASE