Academic Journal

A comprehensive probabilistic analysis of SIR-type epidemiological models based on full randomized Discrete-Time Markov Chain formulation with applications

التفاصيل البيبلوغرافية
العنوان: A comprehensive probabilistic analysis of SIR-type epidemiological models based on full randomized Discrete-Time Markov Chain formulation with applications
المؤلفون: Cortés, J.-C., El-Labany, S.K., Navarro-Quiles, A., Selim, Mustafa M., Slama, H.
المساهمون: Universitat Politècnica de València. Departamento de Matemática Aplicada - Departament de Matemàtica Aplicada, Generalitat Valenciana, Agencia Estatal de Investigación
بيانات النشر: John Wiley & Sons
سنة النشر: 2020
المجموعة: Universitat Politécnica de Valencia: RiuNet / Politechnical University of Valencia
مصطلحات موضوعية: First probability density function, Random variable transformation technique, Randomized discrete-time Markov chains, Simulations, SIR epidemiological model, MATEMATICA APLICADA
الوصف: [EN] This paper provides a comprehensive probabilistic analysis of a full randomization of approximate SIR-type epidemiological models based on discrete-time Markov chain formulation. The randomization is performed by assuming that all input data (initial conditions, the contagion, and recovering rates involved in the transition matrix) are random variables instead of deterministic constants. In the first part of the paper, we determine explicit expressions for the so called first probability density function of each subpopulation identified as the corresponding states of the Markov chain (susceptible, infected, and recovered) in terms of the probability density function of each input random variable. Afterwards, we obtain the probability density functions of the times until a given proportion of the population remains susceptible, infected, and recovered, respectively. The theoretical analysis is completed by computing explicit expressions of important randomized epidemiological quantities, namely, the basic reproduction number, the effective reproduction number, and the herd immunity threshold. The study is conducted under very general assumptions and taking extensive advantage of the random variable transformation technique. The second part of the paper is devoted to apply our theoretical findings to describe the dynamics of the pandemic influenza in Egypt using simulated data excerpted from the literature. The simulations are complemented with valuable information, which is seldom displayed in epidemiological models. In spite of the nonlinear mathematical nature of SIR epidemiological model, our results show a strong agreement with the approximation via an appropriate randomized Markov chain. A justification in this regard is discussed. ; Spanish Ministerio de Economia y Competitividad, Grant/Award Number: MTM2017-89664-P; Generalitat Valenciana, Grant/Award Number: APOSTD/2019/128; Ministerio de Economia y Competitividad, Grant/Award Number: MTM2017-89664-P ; Cortés, J.; El-Labany, S.; Navarro-Quiles, A.; ...
نوع الوثيقة: article in journal/newspaper
اللغة: English
تدمد: 0170-4214
Relation: Mathematical Methods in the Applied Sciences; info:eu-repo/grantAgreement/AEI/Plan Estatal de Investigación Científica y Técnica y de Innovación 2013-2016/MTM2017-89664-P/ES/PROBLEMAS DINAMICOS CON INCERTIDUMBRE SIMULABLE: MODELIZACION MATEMATICA, ANALISIS, COMPUTACION Y APLICACIONES/; info:eu-repo/grantAgreement/GVA//APOSTD%2F2019%2F128/; https://doi.org/10.1002/mma.6482; urn:issn:0170-4214; http://hdl.handle.net/10251/162100
DOI: 10.1002/mma.6482
الاتاحة: http://hdl.handle.net/10251/162100
https://doi.org/10.1002/mma.6482
Rights: http://rightsstatements.org/vocab/InC/1.0/ ; info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.86E0BF92
قاعدة البيانات: BASE
الوصف
تدمد:01704214
DOI:10.1002/mma.6482