Academic Journal
Overview of recent results from the ST40 compact high-field spherical tokamak
العنوان: | Overview of recent results from the ST40 compact high-field spherical tokamak |
---|---|
المؤلفون: | McNamara, Steven, Alieva, Aleksandra, Anastopoulos Tzanis, M.S., Asunta, Otto Vihtori, Bland, James Robert, Bohlin, Hannes, Buxton, Peter Francis, Colgan, Cary, Dnestrovskii, Aleksei, du Toit, Erasmus, Fontana, Matteo, Gemmell, Michael, Gryaznevich, Mikhail P, Hakosalo, Jussi, Hardman, Michael, Harryman, Daniel, Hoffman, David, Iliasova, Margarita, Janhunen, Salomon, Janky, Filip, Lister, Jo B, Lowe, Hazel F, Maartensson, Erik, Marsden, Chris, Medvedev, Sergei Y, Mirfayzi, Reza, Moscheni, Matteo, Naylor, Graham, Njau, John, Nemytov, Vadim, O'Gorman, Thomas, Osin, Dmitry, Pyragius, Tadas, Rengle, Adrian, Romanelli, M., Romero, Cristian, Sertoli, Marco, Shevchenko, Vladimir F, Sinha, Joyeeta, Sladkomedova, Alsu, Sridhar, Sundaresan, Stirling, James, Takase, Yuichi, Thomas, Paul R, Varje, Jari, Vekshina, Elena, Vincent, Benjamin, Willett, Hannah V, Wood, Jonathan, Wooldridge, Emma |
المساهمون: | Fusion Energy Sciences |
المصدر: | Nuclear Fusion ; ISSN 0029-5515 1741-4326 |
بيانات النشر: | IOP Publishing |
سنة النشر: | 2024 |
الوصف: | ST40 is a compact, high-field (B T0 ≤ 2.1T) spherical tokamak (ST) with a mission to expand the physics and technology basis for the ST route to commercial fusion. The ST40 research programme covers confinement and stability; solenoid-free start-up; high-performance operating scenarios; and plasma exhaust. In 2022, ST40 obtained a central deuterium ion temperatures of 9.6 ± 0.4 keV, demonstrating for the first time that pilot plant relevant ion temperatures can be reached in a compact, high-field ST. Analysis of these high-ion temperature plasmas is presented, including a summary of confinement, transport and microstability characteristics and energetic particle instabilities. Recent scenario development activities have focused on establishing diverted H-mode plasma discharges across a range of toroidal fields and plasma currents, along with scenarios with high non-inductive current fractions. In future operations, beginning in 2025, a 1MW dual frequency (104/137 GHz) electron cyclotron (EC) system will be installed to enable the study of EC and electron Bernstein wave plasma start-up and current drive. Predictive modelling of the potential performance of these systems is presented. |
نوع الوثيقة: | article in journal/newspaper |
اللغة: | unknown |
DOI: | 10.1088/1741-4326/ad6ba7 |
DOI: | 10.1088/1741-4326/ad6ba7/pdf |
الاتاحة: | http://dx.doi.org/10.1088/1741-4326/ad6ba7 https://iopscience.iop.org/article/10.1088/1741-4326/ad6ba7 https://iopscience.iop.org/article/10.1088/1741-4326/ad6ba7/pdf |
Rights: | https://creativecommons.org/licenses/by/4.0/ ; https://iopscience.iop.org/info/page/text-and-data-mining |
رقم الانضمام: | edsbas.86102590 |
قاعدة البيانات: | BASE |
DOI: | 10.1088/1741-4326/ad6ba7 |
---|