玻璃模造製程中以離子束輔助沈積之氮化鉻鎢硬膜做為模仁保護層之可行性研究 ; Processing of Chromium Tungsten Nitride Hard Coatings for Glass Molding

التفاصيل البيبلوغرافية
العنوان: 玻璃模造製程中以離子束輔助沈積之氮化鉻鎢硬膜做為模仁保護層之可行性研究 ; Processing of Chromium Tungsten Nitride Hard Coatings for Glass Molding
المؤلفون: 林志雄
المساهمون: 杜正恭
سنة النشر: 2005
المجموعة: National Tsing Hua University Institutional Repository (NTHUR)
مصطلحات موضوعية: 模造, 非球面玻璃, 離子束輔助沉積, 氮化鉻, 氮化鉻鎢, 固溶強化, molding, aspherical lens, IBAD, CrN, CrWN, solid solution strengthening
Time: 27
الوصف: 碩士 ; 國立清華大學 ; 材料科學工程學系 ; GH000923511 ; 隨各類光電產品之蓬勃發展,高折射率非球面光學玻璃之應用遽增,而非球面光學玻璃之製作仰賴精密加工及模造技術。在模造製程中,重要之關鍵係為模仁鍍膜之性質,如何開發高硬度、耐溫、附著性佳、不與玻璃材料起反應之模仁鍍膜係為目前重要之研究目標。現今模造鍍膜普遍使用金屬材料,主要為貴重金屬膜,配合過渡金屬或耐火金屬為中間層,惟此製程之成本十分昂貴,本研究以具有奈米結構之鉻鎢氮化物取代常用之貴重金屬材料,開發其製程並研究其膜層特性,希冀藉其高硬度、熱性質及附著性佳以及成本較低之特點可成為模造鍍膜之新材料。 研究中採用離子輔助沈積之方法製備氮化鉻鎢薄膜,為符合加工需求,所有薄膜厚度控制在2μm左右,並以調變鎢靶材於濺鍍製程中input power之方法,得到鎢含量介於4.1 at.%~23.4 at.%之氮化鉻鎢薄膜。經由X-ray分析後,發現薄膜之晶格常數由4.16變大到4.22 Ǻ,且保持氮化鉻F.C.C.之結構,故鎢的添加主要是以固溶形式存在於氮化鉻晶體之中,且此一固溶效應對薄膜有強化之作用,隨著鎢含量增加薄膜硬度最大可提升至24 GPa左右。而適量的鎢添加,也可增加附著性,降低表面粗糙度。研究中認為鎢的最適合添加量為7.1 at.%,此時薄膜之臨界強度(Lc1)高達124 N,且表面粗糙度為2 nm。 由於玻璃模造是於高溫高壓下進行,為探討薄膜之熱性質,研究中亦對氮化鉻鎢薄膜進行大氣下600以及750℃之熱處理,經結構分析及相鑑定後發現,氮化鉻鎢薄膜於氧化後會於表面形成粗糙的Cr2O3氧化物,破壞表面平整度。可靠度分析中則對鍍覆氮化鉻鎢薄膜之模具材料進行試壓,由於實際模造時溫度、真空條件皆不如實驗設計時嚴苛,經一百小時的試壓後,模造玻璃之表面粗糙度皆維持在6~8nm 之間,符合實際應用中10nm的精度需求。 ; CrWN coatings with tungsten content ranged from 4.1 at.% to 23.4 at.% were fabricated by adjusting the input power on a tungsten target through the ion beam assisted deposition (IBAD). After tungsten doping, lattice parameter of the CrWN was expanded from 4.16 to 4.22 Ǻ, and only the face centered cubic phase of the CrN was observed. Due to the solid solution strengthening, an apparent increase on the hardness was exhibited, and maximum hardness, 23.9 GPa was reached. In addition, the critical load and residual stress were measured. It was found that coatings revealed excellent critical load higher than 80 N as compressive stress below 2.5 GPa. Surface roughness and crystallite size of the CrWN coatings were analyzed by an atomic force microscopy and the Scherrer formula, respectively. With 4 at.% W doping, more than 50% decrease on the crystallite size was revealed, and a lower surface roughness around 2 nm was obtained due to the reduced crystallinity. This provided satisfactory surface condition requirements of 10 nm with practical optical accuracy for glass molding die. It was demonstrated that CrWN coatings with 4.4 to 16.7 at.% tungsten doping, exhibiting enhanced hardness and smooth surface morphology, could be ...
نوع الوثيقة: other/unknown material
وصف الملف: 155 bytes; text/html
اللغة: English
Relation: 1. F.B. Wu, W.Y. Chen, J.G. Duh, Surf. Coat. Technol. 163-164 (2003) 227 2. T. Hurkmans, D. B. Lewis, J.S. Brooks, W.-D. Münz, Surf. Coat. Technol. 86/87 (1996) 192. 3. S.H. Yao, Y.L. Su, Wear 212 (1997) 85. 4. I. Wadsworth, I.J. Smith, L.A. Donohue, W.-D. Münz, Surf. Coat. Technol. 94 (1997) 315. 5. P. Panjan, B. Navinsek, A. Cvelbar, A. Zalar, J. Vlcek, Surf. Coat. Technol. 98 (1998) 1497. 6. P. Engel, G. Schwarz, and G. K. Wolf, "Characterization of chromium nitride films prepared by ion-beam-assisted deposition", Surf. Coat. Technol. 112 (1999) 286-290 7. J. Almer, M. Oden, L. Hultman, G. Håkansson, J. Vac. Sci. Technol. A18 (1) (2000) 121 8. P. H. Mayrhofer, G. Tischler, C. Mitterer, " Microstructure and Mechanical/Thermal Properties of Cr–N Coatings Deposited by Reactive Unbalanced Magnetron Sputtering ", Surf. Coat. Technol. 142-144 (2001) 78. 9. P. H. Mayrhofer, C. Mitterer, J. Musil, "Structure-Property Relationships in Single- and Dual-Phase Nanocrystalline Hard Coatings", Surf. Coat. Technol. 174-175 (2003) 725-731. 10. J. N. Tu, J. G. Duh, and S. Y. Tsai, "Morphology, Mechanical Properties, and Oxidation Behavior of Reactive Sputtered Cr-N Films", Surf. Coat. Technol.133-134 (2000) 181-185 11. C. Mitterer, P.H. Mayrhofer, J. Musil, Vacuum 71 (2003) 279 12. P. H. Mayrhofer, H. Willmann, C. Mitterer, "Oxidation Kinetics of Sputtered CrN Hard Coatings", Surf. Coat. Technol. 146-147 (2001) 222-228. 13. H.Y. Chen, F. H. Lu, J. Vac. Sci. Technol. A21 (3), 2003, 695 14. F. H. Liu, H. Y. Chen, and C. H. Hung, "Degradation of CrN Films at High Temperature under Controlled Atmosphere", J. Vac. Sci. Technol. A21(3) (2003) 671-675. 15. P. Hones, R. Sanjinés, F. Lévy, "Sputter Deposited Chromium Nitride Based Ternary Compounds for Hard Coatings", Thin Solid Films 332 (1998) 240 16. P. Hones, R. Consiglio, N. Randall, F. Lévy, "Mechanical Properties of Hard Chromium Tungsten Nitride Coatings", Surf. Coat. Technol. 125 (2000) 179-184. 17. M. Uchida, N. Nihira, A. Mitsuo, "Friction and Wear Properties of CrAlN and CrVN Films Deposited by Cathodic Arc Ion Plating Methode", Surf. Coat. Technol. 177-178 (2004) 627-630. 18. B.D. Cullity, S.R. Stock, X-ray diffraction, 3rd edition, 2001, p170. 19. D. S. Rickerby and A. Matthews, "Advanced Surface Coatings: a handbook of surface engineering", Glasgow, Blackie, (1991). 20. Y. Chiba, T. Omura, and H. Ichimura, "Wear Resistance of Arc Ion-Plated Chromium Nitride Coatings", J. Mater. Res., 8 (1993) 1109-1115. 21. H. Holleck, in: A. Kumar, Y. W. Chung, J. J. Moore, J. E. Smugeresky (Eds.), Surface Engineering: Science and Technology I, The Minerals, Metals and Materials Society, 1999,pp. 207–231. 22. H. Hellock, "Material Selection for Hard Coatings," J. Vac. Sci. Technol., A4(6) (1986) 2661-2669. 23. R. Behrisch Ed., "Sputtering by Particle Bombardment," Applied Physics, 47, Berlin, Springer, (1981). 24. P. D. Toensend, and J. C. Kelly, "Ion Implantation: Sputtering and Their Applications", Academic Press, (1976). 25. M. Ohring Ed., "The Materials Science of Thin Films", Academic Press, London, UK, (1992) Chap.3 123-124, 278-286. 26. Walter R. Sobie, "Ion Beam Technology for Thin Film Applications", Vac. Thin Film., April, (1999). 27. F. Attar, T Johannesson, "Adhesion and X-Ray Elastic Constant Evaluation of CrN Coating", Thin Solid Films 258 (1995) 205-212. 28. P. Hones, N. Martin, M. Regula, "Structural and Mechanical Properties of Chromium Nitride, Molybdenum Nitride, and Tungsten NitrideThin Films", J. Phys. D: Appl. Phys. 36 (2003) 1023-1029. 29. W. Herr, B. Matthes, E. Broszeit, M. Mayer and R. Suchentrunk, "Influence of substrate material and deposition parameters on the structure, residual stress, hardness and adhesion of sputtered CrxNy hard coatings", Surf. Coat. Technol. 60 (1993) 428-413. 30. M. Pakala, R.Y. Lin, "Reactive sputter deposition of chromium nitride coatings", Surf. Coat. Technol. 81 (1996) 233-239. 31. Sam Zhang, Deen Sun, Yongqiug Fu, "RecentAdvances of Superhard Nanocomposite Coatings : A Review", Surf. Coat. Technol. 167 (2003) 113-119. 32. P. Hones, R. Sanjinés, F. Lévy, O. Shojaei, "Electronic structure and mechanical properties of resistant coatings: The chromium molybdenum nitride system", J. Vac. Sci. Technol, A 17 (1999) 1024. 33. P. Hones, M. Diserens, R. Sanjinés, F. Lévy, "Electronic Structure and Mechanical Properties of Hard Coatings from The Chromium-Tungsten Nitride system", J. Vac. Sci. Technol. B 18(6) (2000) 2851-2856. 34. F. Regent, J. Musil, "Magnetron Sputtered Cr-Ni-N and Ti-Mo-N Films: Comparison of Mechanical Properties", Surf. Coat. Technol. 142-144 (2001) 146-151. 35. T. Z. Gorishnyy, D. Mihut, S. L. Rohde, "Physical and Mechanical Properties of Reactively Sputtered Chromium Boron Nitride Thin Films", Thin Solid Films 445 (2003) 96-104. 36. Jong Hyun Park, Won Sub Chung, "Synthesis and Mechanical Properties of Cr-Si-N Coatings Deposited by a Hybrid System of Arc Ion Plating and Sputtering", Surf. Coat. Technol. 188-189 (2004) 425-430. 37. E. Martinez, R. Sanjinés, "Mechanical Properties of Nanocomposite and Multilayered Cr-Si-N Sputtered Thin Films", Surf. Coat. Technol. 180-181 (2004) 570-574. 38. T. R. Thomas, "Rough Surfaces", 2nd Edition, Imperial College Press, London, (1999) Chap. 2, 21. 39. J. M. Bennett and L. Mattsson, "Introduction to Surface Roughness and Scattering", Optical Society of America, Washington, D. C., (1989) Chap. 4, 39. 40. J. C. Vickerman Ed., "Surface Analysis: The Principle Techniques," John Wiley & Sons, Chichester, UK, (1997) 393. 41. H. Holleck, "Material Selection for Hard Coatings", J. Vac. Sci. Technol., A4 (6) (1986) 2661-2669. 42. H. Y. Chen, C. J. Tsai, F. H. Lu, "The Young’s Modulus of Chromium Nitride Films", Surf. Coat. Technol. 184 (2004) 69-73. 43. C. Friedrich, G. Berg, E. Broszeit, K. -H. Kloos, "X-ray Diffractometry Analysis of R.F. -Sputtered Hard Coatings Based on Nitrides of Ti, Cr, Hf", Surf. Coat. Technol. 74-75 (1995) 279-285. 44. J. N. Tu, "Composition, Surface Morphology, Mechanical Properties, Corrosion ans Oxidation Behavior of Reactively Sputtered CrN Films", M. S. thesis, (1997) 41-47, 48-53, 61-64. National Tsing Hua University, Hsinchu, Taiwan. 45. S. B. Santa and K. S. Gill, "Growth and Characterization of Cathodic Arc Evaporated CrN, (Ti, Al)N and (Ti, Zr)N Films", Surf. Coat. Technol. 68/69 (1994) 152-156. 46. R.R. Aharonov, B.F. Coll and R. P. Fontana, "Properties of Chromium Nitride Coatings Deposited by Cathodic Arc Evaporation", Surf. Coat. Technol. 61 (1993) 223-226. 47. O. Knotek, F. Loffler, H. -J. Scholl, "Properties of Arc-Evaporated CrN and (Cr, Al)N Coatings", Surf. Coat. Technol. 45 (1991) 53-58. 48. A. Ehrlich, M. Kuhn, F. Richter, W. Hoyer, "Complex Characterisation of Vacuum Arc-Deposited Chromium Nitride Thin Films", Surf. Coat. Technol. 76-77 (1995) 280-286. 49. W. C. Oliver, G. M. Pharr, J. Matter. Res.,7(1992)1564. 50. G.G. Stoney, Proc. R. Soc. London, Ser. A 82, 172(1909); http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/27113
الاتاحة: http://nthur.lib.nthu.edu.tw/dspace/handle/987654321/27113
رقم الانضمام: edsbas.8517E411
قاعدة البيانات: BASE