التفاصيل البيبلوغرافية
العنوان: |
A New Proof for a Result on the Inclusion Chromatic Index of Subcubic Graphs |
المؤلفون: |
Lily Chen, Yanyi Li |
المصدر: |
Axioms; Volume 11; Issue 1; Pages: 33 |
بيانات النشر: |
Multidisciplinary Digital Publishing Institute |
سنة النشر: |
2022 |
المجموعة: |
MDPI Open Access Publishing |
مصطلحات موضوعية: |
inclusion-free edge coloring, subcubic, adjacent-vertex-distinguishing edge coloring |
الوصف: |
Let G be a graph with a minimum degree δ of at least two. The inclusion chromatic index of G, denoted by χ⊂′(G), is the minimum number of colors needed to properly color the edges of G so that the set of colors incident with any vertex is not contained in the set of colors incident to any of its neighbors. We prove that every connected subcubic graph G with δ(G)≥2 either has an inclusion chromatic index of at most six, or G is isomorphic to K^2,3, where its inclusion chromatic index is seven. |
نوع الوثيقة: |
text |
وصف الملف: |
application/pdf |
اللغة: |
English |
Relation: |
https://dx.doi.org/10.3390/axioms11010033 |
DOI: |
10.3390/axioms11010033 |
الاتاحة: |
https://doi.org/10.3390/axioms11010033 |
Rights: |
https://creativecommons.org/licenses/by/4.0/ |
رقم الانضمام: |
edsbas.83C37FAA |
قاعدة البيانات: |
BASE |