Academic Journal

A New Proof for a Result on the Inclusion Chromatic Index of Subcubic Graphs

التفاصيل البيبلوغرافية
العنوان: A New Proof for a Result on the Inclusion Chromatic Index of Subcubic Graphs
المؤلفون: Lily Chen, Yanyi Li
المصدر: Axioms; Volume 11; Issue 1; Pages: 33
بيانات النشر: Multidisciplinary Digital Publishing Institute
سنة النشر: 2022
المجموعة: MDPI Open Access Publishing
مصطلحات موضوعية: inclusion-free edge coloring, subcubic, adjacent-vertex-distinguishing edge coloring
الوصف: Let G be a graph with a minimum degree δ of at least two. The inclusion chromatic index of G, denoted by χ⊂′(G), is the minimum number of colors needed to properly color the edges of G so that the set of colors incident with any vertex is not contained in the set of colors incident to any of its neighbors. We prove that every connected subcubic graph G with δ(G)≥2 either has an inclusion chromatic index of at most six, or G is isomorphic to K^2,3, where its inclusion chromatic index is seven.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: https://dx.doi.org/10.3390/axioms11010033
DOI: 10.3390/axioms11010033
الاتاحة: https://doi.org/10.3390/axioms11010033
Rights: https://creativecommons.org/licenses/by/4.0/
رقم الانضمام: edsbas.83C37FAA
قاعدة البيانات: BASE