Academic Journal
Efficient GPU implementation of a Boltzmann-Schrödinger-Poisson solver for the simulation of nanoscale DG MOSFETs
العنوان: | Efficient GPU implementation of a Boltzmann-Schrödinger-Poisson solver for the simulation of nanoscale DG MOSFETs |
---|---|
المؤلفون: | Vecil, Francesco, Mantas, José, Miguel, Alonso-Jordá, Pedro |
المساهمون: | Laboratoire de Mathématiques Blaise Pascal (LMBP), Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA), Universidad de Granada = University of Granada (UGR), Universitat Politècnica de València = Universitad Politecnica de Valencia = Polytechnic University of Valencia (UPV) |
المصدر: | ISSN: 0920-8542. |
بيانات النشر: | CCSD Springer Verlag |
سنة النشر: | 2023 |
المجموعة: | HAL Clermont Auvergne (Université Blaise Pascal Clermont-Ferrand / Université d'Auvergne) |
مصطلحات موضوعية: | Semiconductor physics, Deterministic mesoscopic models, Parallel heterogeneous systems, GPU computing, Schrodinger-Poisson system, Parallelization of numerical algorithms, [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph], [SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics |
الوصف: | International audience ; A previous study by Mantas and Vecil (Int J High Perform Comput Appl 34(1): 81-102, 2019) describes an efficient and accurate solver for nanoscale DG MOS-FETs through a deterministic Boltzmann-Schrödinger-Poisson model with seven electron-phonon scattering mechanisms on a hybrid parallel CPU/GPU platform. The transport computational phase, i.e. the time integration of the Boltzmann equations, was ported to the GPU using CUDA extensions, but the computation of the system's eigenstates, i.e. the solution of the Schrödinger-Poisson block, was parallelized only using OpenMP due to its complexity. This work fills the gap by describing a port to GPU for the solver of the Schrödinger-Poisson block. This new proposal implements on GPU a Scheduled Relaxation Jacobi method to solve the sparse linear systems which arise in the 2D Poisson equation. The 1D Schrödinger equation is solved on GPU by adapting a multi-section iteration and the Newton-Raphson algorithm to approximate the energy levels, and the Inverse Power Iterative Method is used to approximate the wave vectors. We want to stress that this solver for the Schrödinger-Poisson block can be thought as a module independent of the transport phase (Boltzmann) and can be used for solvers using different levels of description for the electrons; therefore, it is of particular interest because it can be adapted to other macroscopic, hence faster, solvers for confined devices exploited at industrial level. |
نوع الوثيقة: | article in journal/newspaper |
اللغة: | English |
DOI: | 10.1007/s11227-023-05189-0 |
الاتاحة: | https://hal.science/hal-04907803 https://hal.science/hal-04907803v1/document https://hal.science/hal-04907803v1/file/Alonso_Mantas_Vecil.pdf https://doi.org/10.1007/s11227-023-05189-0 |
Rights: | info:eu-repo/semantics/OpenAccess |
رقم الانضمام: | edsbas.8375EF5C |
قاعدة البيانات: | BASE |
DOI: | 10.1007/s11227-023-05189-0 |
---|