Fake News and Breaking News Detection using Machine Learning

التفاصيل البيبلوغرافية
العنوان: Fake News and Breaking News Detection using Machine Learning
المؤلفون: Arya Sasi, Merin Chacko
المصدر: (NCECA)-2022, National Conference on Emerging Computer Applications (NCECA)-2022, India, 15 June 2022
بيانات النشر: Amal Jyothi College of Engineering Kanjirappally, Kottayam
سنة النشر: 2022
المجموعة: Zenodo
مصطلحات موضوعية: fake news, real news, Machine learning, Naive bayes classifier, Stopwords, TF-IDF vectorizer
الوصف: — Because of developments in communication and social media, fake news is spreading at a quick and rising rate. Fake news and breaking news identification is a relatively young subject of study that has sparked considerable attention. Due of a scarcity of resources, such as datasets and processing and analysis methodologies, it confronts various difficulties. In this study, we show how a machine learning-based system can recognise false news and breaking news. We used term frequency x0002 inverse document frequency (TF-IDF) of bag of words and n-grams as a feature extraction approach and Naive Bayers as a classifier.In order to train the suggested system, we additionally present a dataset of false and real news. The system's effectiveness is demonstrated by the produced outcomes.
نوع الوثيقة: conference object
اللغة: unknown
Relation: https://zenodo.org/communities/amaljyothi; https://doi.org/10.5281/zenodo.6937310; https://doi.org/10.5281/zenodo.6937311; oai:zenodo.org:6937311
DOI: 10.5281/zenodo.6937311
الاتاحة: https://doi.org/10.5281/zenodo.6937311
Rights: info:eu-repo/semantics/openAccess ; Creative Commons Attribution 4.0 International ; https://creativecommons.org/licenses/by/4.0/legalcode
رقم الانضمام: edsbas.82469900
قاعدة البيانات: BASE