Academic Journal

Subject Review: Diagnoses cancer diseases systems for most body's sections using image processing techniques

التفاصيل البيبلوغرافية
العنوان: Subject Review: Diagnoses cancer diseases systems for most body's sections using image processing techniques
المؤلفون: Dena Nadir George, Haitham Salman Chyad, Raniah Ali Mustafa
المصدر: Global Journal of Engineering and Technology Advances, 6(3), 056-062, (2021-03-30)
بيانات النشر: Zenodo
سنة النشر: 2021
المجموعة: Zenodo
مصطلحات موضوعية: Feed-Forward Back Propagation NN, A gray-level co-occurrence matrix (GLCM), Dense Scale Invariant Feature Transform (DSIFT), Deep convolutional neural network (DCNN)
الوصف: Medical imaging has become an important part of diagnosing, early detection, and treating cancers. In this paper, a comprehensive survey on various image processing techniques for medical images specifically examined cancer diseases for most body sections. These sections are Bone, Liver, Kidney, Breast, Lung, and Brain. Detection of medical imaging involves different stages such as classification, segmentation, image pre-processing, and feature extraction. With regard to this work, many image processing methods will be studied, over 10 surveys reviewing classification, feature extraction, and segmentation methods utilized image processing for cancer diseases for most body's sections are clearly reviewed.
نوع الوثيقة: article in journal/newspaper
اللغة: English
Relation: https://zenodo.org/communities/gjeta; https://doi.org/10.5281/zenodo.4643419; https://doi.org/10.5281/zenodo.4643420; oai:zenodo.org:4643420; https://doi.org/10.30574/gjeta.2021.6.3.0031
DOI: 10.5281/zenodo.4643420
DOI: 10.30574/gjeta.2021.6.3.0031
الاتاحة: https://doi.org/10.5281/zenodo.4643420
https://doi.org/10.30574/gjeta.2021.6.3.0031
Rights: info:eu-repo/semantics/openAccess ; Creative Commons Attribution 4.0 International ; https://creativecommons.org/licenses/by/4.0/legalcode
رقم الانضمام: edsbas.80A8046B
قاعدة البيانات: BASE