An overview of contour detection approaches

التفاصيل البيبلوغرافية
العنوان: An overview of contour detection approaches
المؤلفون: Gong XY(宫新一), Hu Su, De Xu, Zhengtao Zhang, Fei Shen, Huabin Yang
سنة النشر: 2018
المجموعة: Institute of Automation: CASIA OpenIR (Chinese Academy of Sciences) / 中国科学院自动化研究所机构知识库
مصطلحات موضوعية: Contour Detection, Contour Salience, Gestalt Principle, Contour Grouping, Active Contour
الوصف: Object contour plays an important role in fields such as semantic segmentation and image classification. However, the extraction of the contour is a difficult task, especially when the contour is incomplete or unclosed. In this paper, existing contour detection approaches are reviewed and roughly divided into three categories: pixel-based, edge-based, and region-based. In addition, while the traditional contour detection approaches have achieved a high degree of sophistication, deep convolutional neural networks (DCNNs) have demonstrated a good performance in image recognition, and therefore, the DCNNs based contour detection approaches are also covered in this paper. Furthermore, the future development of contour detection is analyzed and predicted.
نوع الوثيقة: report
اللغة: English
Relation: International Journal of Automation and Computing; http://ir.ia.ac.cn/handle/173211/23674
الاتاحة: http://ir.ia.ac.cn/handle/173211/23674
رقم الانضمام: edsbas.8085B675
قاعدة البيانات: BASE