Academic Journal

Extensions of linear operators from hyperplanes of $l^{(n)}_\infty$

التفاصيل البيبلوغرافية
العنوان: Extensions of linear operators from hyperplanes of $l^{(n)}_\infty$
المؤلفون: Baronti, Marco, Fragnelli, Vito, Lewicki, Grzegorz
بيانات النشر: Charles University in Prague, Faculty of Mathematics and Physics
سنة النشر: 1995
المجموعة: DML-CZ (Czech Digital Mathematics Library)
مصطلحات موضوعية: keyword:linear operator, keyword:extension of minimal norm, keyword:element of best approximation, keyword:strongly unique best approximation, msc:41A35, msc:41A52, msc:41A55, msc:41A65, msc:46A22, msc:47A20
الوصف: summary:Let $Y \subset l^{(n)}_{\infty }$ be a hyperplane and let $A \in {\Cal L}(Y)$ be given. Denote $$ \align {\Cal A} = & \{L\in {\Cal L}(l^{(n)}_{\infty },Y):L\mid Y = A\} \text{ and} \ & \lambda_{A} = \inf \{\parallel L \parallel : L\in {\Cal A}\}. \endalign $$ In this paper the problem of calculating of the constant $\lambda_{A}$ is studied. We present a complete characterization of those $A \in {\Cal L}(Y)$ for which $\lambda_{A} = \parallel A \parallel $. Next we consider the case $\lambda_{A} > \parallel A \parallel $. Finally some computer examples will be presented.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
تدمد: 0010-2628
1213-7243
Relation: mr:MR1364484; zbl:Zbl 0831.41014; reference:[1] Baronti M., Papini P.L.: Norm one projections onto subspaces of $l^p$.Ann. Mat. Pura Appl. IV (1988), 53-61. MR 0980971; reference:[2] Blatter J., Cheney E.W.: Minimal projections onto hyperplanes in sequence spaces.Ann. Mat. Pura Appl. 101 (1974), 215-227. MR 0358179; reference:[3] Collins H.S., Ruess W.: Weak compactness in spaces of compact operators and vector valued functions.Pacific J. Math. 106 (1983), 45-71. MR 0694671; reference:[4] Odyniec Wl., Lewicki G.: Minimal Projections in Banach Spaces.Lecture Notes in Math. 1449, Springer-Verlag. Zbl 1062.46500, MR 1079547; reference:[5] Singer I.: On the extension of continuous linear functionals.Math. Ann. 159 (1965), 344-355. Zbl 0141.12002, MR 0188758; reference:[6] Singer I.: Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces.Springer-Verlag, Berlin, Heidelberg, New York, 1970. Zbl 0197.38601, MR 0270044; reference:[7] Sudolski J., Wojcik A.: Some remarks on strong uniqueness of best approximation.Approximation Theory and its Applications 6 (1990), 44-78. Zbl 0704.41016, MR 1078687
الاتاحة: http://hdl.handle.net/10338.dmlcz/118772
Rights: access:Unrestricted ; rights:DML-CZ Czech Digital Mathematics Library, http://dml.cz/ ; rights:Institute of Mathematics AS CR, http://www.math.cas.cz/ ; conditionOfUse:http://dml.cz/use
رقم الانضمام: edsbas.7EC7AC21
قاعدة البيانات: BASE