Report
Molecular model of a bacterial flagellar motor in situ reveals a “parts-list” of protein adaptations to increase torque
العنوان: | Molecular model of a bacterial flagellar motor in situ reveals a “parts-list” of protein adaptations to increase torque |
---|---|
المؤلفون: | Drobnič, Tina, Cohen, Eli, J, Calcraft, Tom, Alzheimer, Mona, Froschauer, Kathrin, Svensson, Sarah, Hoffmann, William, H, Singh, Nanki, Garg, Sriram, G, Henderson, Louie, Umrekar, Trishant, R, Nans, Andrea, Ribardo, Deborah, Pedaci, Francesco, Nord, Ashley, L, Hochberg, Georg, K A, Hendrixson, David, R, Sharma, Cynthia, M, Rosenthal, Peter, B, Beeby, Morgan |
المساهمون: | Imperial College London, MRC Laboratory of Molecular Biology Cambridge, UK (LMB), University of Cambridge UK (CAM)-Medical Research Council, The Francis Crick Institute London, Julius-Maximilians-Universität Würzburg = University of Würzburg (JMU), Chinese Academy of Sciences Beijing (CAS), Centre de Biologie Structurale Montpellier (CBS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM), Max Planck Institute for Terrestrial Microbiology, Max-Planck-Gesellschaft, University of Texas Southwestern Medical Center, Centre de Biochimie Structurale Montpellier (CBS), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS) |
المصدر: | https://hal.science/hal-04759656 ; 2024. |
بيانات النشر: | HAL CCSD |
سنة النشر: | 2024 |
المجموعة: | Université de Montpellier: HAL |
مصطلحات موضوعية: | [SDV]Life Sciences [q-bio] |
الوصف: | One hurdle to understanding how molecular machines work, and how they evolve, is our inability to see their structures in situ . Here we describe a minicell system that enables in situ cryogenic electron microscopy imaging and single particle analysis to investigate the structure of an iconic molecular machine, the bacterial flagellar motor, which spins a helical propeller for propulsion. We determine the structure of the high-torque Campylobacter jejuni motor in situ, including the subnanometre-resolution structure of the periplasmic scaffold, an adaptation essential to high torque. Our structure enables identification of new proteins, and interpretation with molecular models highlights origins of new components, reveals modifications of the conserved motor core, and explain how these structures both template a wider ring of motor proteins, and buttress the motor during swimming reversals. We also acquire insights into universal principles of flagellar torque generation. This approach is broadly applicable to other membrane-residing bacterial molecular machines complexes. |
نوع الوثيقة: | report |
اللغة: | English |
Relation: | BIORXIV: 2023.09.08.556779 |
DOI: | 10.1101/2023.09.08.556779 |
الاتاحة: | https://hal.science/hal-04759656 https://hal.science/hal-04759656v1/document https://hal.science/hal-04759656v1/file/2023.09.08.556779v2.full.pdf https://doi.org/10.1101/2023.09.08.556779 |
Rights: | info:eu-repo/semantics/OpenAccess |
رقم الانضمام: | edsbas.7B2703ED |
قاعدة البيانات: | BASE |
DOI: | 10.1101/2023.09.08.556779 |
---|