Modelo mecanobiológico de daño a escala micro en hueso trabecular primario
العنوان: | Modelo mecanobiológico de daño a escala micro en hueso trabecular primario |
---|---|
المؤلفون: | Libardo Rojas, Jose, Garzón, Diego, Narváez, Carlos, López, Oscar |
المساهمون: | orcid:0000-0001-7845-1299, orcid:0000-0002-0359-839X, orcid:0000-0001-5750-2923, orcid:0000-0001-6102-9841, https://scholar.google.es/citations?user=V0oEE7cAAAAJ&hl=es, https://scholar.google.com/citations?user=Q4OJ8mQAAAAJ&hl=es, https://scholar.google.es/citations?user=E1Fw2WcAAAAJ&hl=es&oi=ao, https://scholar.google.es/citations?user=hhrFXnIAAAAJ&hl=es&oi=ao, http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000531359, http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000130989, http://scienti.colciencias.gov.co:8081/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000195065, https://scienti.colciencias.gov.co/cvlac/visualizador/generarCurriculoCv.do?cod_rh=0000621803 |
سنة النشر: | 2019 |
مصطلحات موضوعية: | Biomechanics, Mechanobiology, Finite elements, Primary trabecular bone, Biomecánica, Mecanobiología, Elementos finitos, Hueso trabecular primario |
جغرافية الموضوع: | CRAI-USTA Bogotá |
الوصف: | El hueso trabecular es una compleja estructura tridimensional, consiste en placas y laminillas que delimitan cavidades en las que se ubica la médula ósea, se produce a partir de un molde de cartílago de crecimiento mediante la osificación endocondral y alcanza su madurez morfológica durante el crecimiento por el modelado y remodelado óseo. El estímulo mecánico es altamente influyente en el proceso celular del desarrollo de este tejido, un desbalance del estímulo produce la variación en la expresión y diferenciación celular que conllevan a patologías que impiden su correcto desarrollo. Los modelos computacionales mecano-biológicos emplean varias herramientas de la mecánica de medio continuo. Específicamente emplean leyes de conservación que en conjunto con ecuaciones constitutivas correctamente planteadas pueden simular el comportamiento de los tejidos biológicos. En esta propuesta de investigación se presenta la planeación que orientará la ejecución de un modelo mecanobiológico de daño que permita estudiar el efecto del estímulo mecánico en la producción de microfracturas en las trabéculas por la variación en la expresión y diferenciación celular. ; Trabecular bone is a complex three-dimensional structure, consisting of plates and lamella that delimit cavities in which the bone marrow is located, is produced from a growth cartilage mold by endochondral ossification, and reaches morphological maturity during growth by bone modeling and remodeling. The mechanical stimulus is highly influential in the cellular process of the development of this tissue, an imbalance of the stimulus produces the variation in cellular expression and differentiation that lead to pathologies that impede its correct development. Mechanical-biological computational models employ various tools of continuous medium mechanics. Specifically, they use conservation laws that together with correctly formulated constitutive equations can simulate the behavior of biological tissues. This research proposal presents the planning that will guide the ... |
نوع الوثيقة: | other/unknown material |
وصف الملف: | application/pdf |
اللغة: | unknown |
Relation: | E. J. Mackie, Y. a Ahmed, L. Tatarczuch, K.-S. Chen, and M. Mirams, “Endochondral ossification: how cartilage is converted into bone in the developing skeleton.,” Int. J. Biochem. Cell Biol., vol. 40, no. 1, pp. 46–62, Jan. 2008.; A. J. S. Summerlee, “Bone formation and development,” Bone Clin. Orthop., pp. 1–21, 2002.; R. Ruimerman, P. Hilbers, B. Van Rietbergen, and R. Huiskes, “A theoretical framework for strain-related trabecular bone maintenance and adaptation,” J. Biomech., vol. 38, no. 4, pp. 931–941, 2005; J. Chen, C. Liu, L. You, and C. A. Simmons, “Boning up on Wolff ’ s Law : Mechanical regulation of the cells that make and maintain bone,” J. Biomech., vol. 43, no. 1, pp. 108–118, 2010; S. D. Badilatti, G. A. Kuhn, S. J. Ferguson, and R. Müller, “Computational modelling of bone augmentation in the spine,” J. Orthop. Transl., vol. 3, no. 4, pp. 185–196, 2015.; H. Isaksson, “Recent advances in mechanobiological modeling of bone regeneration,” vol. 42, pp. 22–31, 2012; G. Bini, F. Bini, R. Bedini, A. Marinozzi, and F. Marinozzi, “A topological look at human trabecular bone tissue,” Math. Biosci., vol. 288, pp. 159–165, 2017; ] I. Goda, J. F. Ganghoffer, S. Czarnecki, R. Czubacki, and P. Wawruch, “Topology optimization of bone using cubic material design and evolutionary methods based on internal remodeling,” Mech. Res. Commun., vol. 95, pp. 52–60, 2019.; L. Allas, K. Boumédiene, and C. Baugé, “Epigenetic dynamic during endochondral ossification and articular cartilage development,” Bone, vol. 120, no. August 2018, pp. 523–532, 2019.; R. Nishimura, K. Hata, K. Ono, R. Takashima, M. Yoshida, and T. Yoneda, “Regulation of endochondral ossification by transcription factors,” J. Oral Biosci., vol. 54, no. 4, pp. 180–183, 2012; D. A. Garzón-Alvarado, J. M. García-Aznar, and M. Doblaré, “Appearance and location of secondary ossification centres may be explained by a reaction-diffusion mechanism.,” Comput. Biol. Med., vol. 39, no. 6, pp. 554–61, Jun. 2009; S. C. Cowin and D. H. Hegedus, “Bone remodeling I: theory of adaptive elasticity,” J. Elast., vol. 6, no. 3, pp. 313–326, 1976; R. Huiskes, R. Ruimerman, L. G Harry van, and J. D Janssen, “Effects of mechanical forces on maintenance and adaptation of form in trabecular bone,” Nature, vol. 405, no. 6787, pp. 704–706, 2000; K. I. Tsubota, Y. Suzuki, T. Yamada, M. Hojo, A. Makinouchi, and T. Adachi, “Computer simulation of trabecular remodeling in human proximal femur using large-scale voxel FE models: Approach to understanding Wolff’s law,” J. Biomech., vol. 42, no. 8, pp. 1088–1094, 2009; B. Depalle, R. Chapurlat, H. Walter-Le-Berre, B. Bou-Saïd, and H. Follet, “Finite element dependence of stress evaluation for human trabecular bone,” J. Mech. Behav. Biomed. Mater., vol. 18, pp. 200–212, 2013; H. Wang, B. Ji, X. S. Liu, X. E. Guo, Y. Huang, and K. C. Hwang, “Analysis of microstructural and mechanical alterations of trabecular bone in a simulated three-dimensional remodeling process,” J. Biomech., vol. 45, no. 14, pp. 2417–2425, 2012; M. I. Pastrama, S. Scheiner, P. Pivonka, and C. Hellmich, “A mathematical multiscale model of bone remodeling, accounting for pore space-specific mechanosensation,” Bone, vol. 107, pp. 208–221, 2018.; M. M. A. Peyroteo, J. Belinha, S. Vinga, L. M. J. S. Dinis, and R. M. Natal Jorge, “Mechanical bone remodelling: Comparative study of distinct numerical approaches,” Eng. Anal. Bound. Elem., vol. 100, no. January 2018, pp. 125–139, 2019; http://hdl.handle.net/11634/22616 |
الاتاحة: | http://hdl.handle.net/11634/22616 |
Rights: | Atribución-NoComercial-SinDerivadas 2.5 Colombia ; http://creativecommons.org/licenses/by-nc-nd/2.5/co/ |
رقم الانضمام: | edsbas.7AD9C736 |
قاعدة البيانات: | BASE |
الوصف غير متاح. |