A Knapsack-based Optimization Algorithm for VNF Placement and Chaining Problem

التفاصيل البيبلوغرافية
العنوان: A Knapsack-based Optimization Algorithm for VNF Placement and Chaining Problem
المؤلفون: Ikhelef, Abdeldjalil, Saidi, Mohand Yazid, Li, Shuopeng, Chen, Ken
المساهمون: Université Sorbonne Paris Nord, L2TI, UR 3043, F-93430, France, Laboratoire de Traitement et Transport de l'Information (L2TI), Université Paris 13 (UP13)-Institut Galilée-Université Sorbonne Paris Cité (USPC)-Université Paris 13 (UP13)-Institut Galilée-Université Sorbonne Paris Cité (USPC), Beijing University of Technology
المصدر: 2022 IEEE 47th Conference on Local Computer Networks (LCN)
https://hal.science/hal-04018739
2022 IEEE 47th Conference on Local Computer Networks (LCN), Sep 2022, Edmonton, France. pp.430-437, ⟨10.1109/LCN53696.2022.9843566⟩
بيانات النشر: HAL CCSD
IEEE
سنة النشر: 2022
المجموعة: Université Paris 13: HAL
مصطلحات موضوعية: Virtual Network Function, Network Function Virtualization, Service Function Chain, Optimization, Multiple Knapsack Problem, Genetic Algorithm, Meta-heuristic, Virtual Network Function Network Function Virtualization Service Function Chain Optimization Multiple Knapsack Problem Genetic Algorithm Meta-heuristic, [INFO]Computer Science [cs]
جغرافية الموضوع: Edmonton, France
Time: Edmonton, France
الوصف: International audience ; During the last decade, we are witnessing the emergence of NFV and SDN to reduce CAPEX and OPEX. Under the SDN paradigm and thanks to NFV, a service can be swiftly deployed by the chaining of several VNFs forming an SFC running on a virtualized infrastructure. Nowadays, there are still quite a number of issues related to SFCs, among them, the optimal placement of SFC components. In this paper, we focused on the variant of the resource allocation cost optimization problem of VNF placement and chaining for limited resources on the servers. After proving that the problem of VNF placement is NP-Hard and equivalent to the multiple knapsack problem, we proposed a genetic algorithm-based meta-heuristic to solve large instance of our VNF placement and chaining problem variant. Simulation results show that our genetic algorithms are efficient since they reduce the SFC mean cost and improve the accepted requests ratio.
نوع الوثيقة: conference object
اللغة: English
DOI: 10.1109/LCN53696.2022.9843566
الاتاحة: https://hal.science/hal-04018739
https://hal.science/hal-04018739v1/document
https://hal.science/hal-04018739v1/file/main.pdf
https://doi.org/10.1109/LCN53696.2022.9843566
Rights: http://creativecommons.org/licenses/by-nc/ ; info:eu-repo/semantics/OpenAccess
رقم الانضمام: edsbas.79FD0A57
قاعدة البيانات: BASE
الوصف
DOI:10.1109/LCN53696.2022.9843566