Academic Journal

Automated Machine Learning Strategies for Multi-Parameter Optimisation of a Caesium-Based Portable Zero-Field Magnetometer

التفاصيل البيبلوغرافية
العنوان: Automated Machine Learning Strategies for Multi-Parameter Optimisation of a Caesium-Based Portable Zero-Field Magnetometer
المؤلفون: Rach Dawson, Carolyn O’Dwyer, Edward Irwin, Marcin S. Mrozowski, Dominic Hunter, Stuart Ingleby, Erling Riis, Paul F. Griffin
المصدر: Sensors; Volume 23; Issue 8; Pages: 4007
بيانات النشر: Multidisciplinary Digital Publishing Institute
سنة النشر: 2023
المجموعة: MDPI Open Access Publishing
مصطلحات موضوعية: magnetometry, atomic, optimisation, machine learning, SERF, caesium
الوصف: Machine learning (ML) is an effective tool to interrogate complex systems to find optimal parameters more efficiently than through manual methods. This efficiency is particularly important for systems with complex dynamics between multiple parameters and a subsequent high number of parameter configurations, where an exhaustive optimisation search would be impractical. Here we present a number of automated machine learning strategies utilised for optimisation of a single-beam caesium (Cs) spin exchange relaxation free (SERF) optically pumped magnetometer (OPM). The sensitivity of the OPM (T/Hz), is optimised through direct measurement of the noise floor, and indirectly through measurement of the on-resonance demodulated gradient (mV/nT) of the zero-field resonance. Both methods provide a viable strategy for the optimisation of sensitivity through effective control of the OPM’s operational parameters. Ultimately, this machine learning approach increased the optimal sensitivity from 500 fT/Hz to <109fT/Hz. The flexibility and efficiency of the ML approaches can be utilised to benchmark SERF OPM sensor hardware improvements, such as cell geometry, alkali species and sensor topologies.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
Relation: Physical Sensors; https://dx.doi.org/10.3390/s23084007
DOI: 10.3390/s23084007
الاتاحة: https://doi.org/10.3390/s23084007
Rights: https://creativecommons.org/licenses/by/4.0/
رقم الانضمام: edsbas.79F761A4
قاعدة البيانات: BASE