Dissertation/ Thesis

Adaptive Bayesian Algorithms for Complex State Space and Mathematical Models

التفاصيل البيبلوغرافية
العنوان: Adaptive Bayesian Algorithms for Complex State Space and Mathematical Models
المؤلفون: Botha, Imke
بيانات النشر: Queensland University of Technology
سنة النشر: 2024
المجموعة: Queensland University of Technology: QUT ePrints
مصطلحات موضوعية: Bayesian inference, sequential Monte Carlo, particle methods, pseudo-marginal methods, SMC^2, ensemble Kalman inversion, state space models
الوصف: Calibrating statistical models to data can be a challenging task, particularly when the model is difficult or time consuming to evaluate. Methods that infer the parameters of these models often require significant practitioner effort and/or computational resources to run, or make simplifying assumptions about the model. This thesis develops novel parameter inference methods that address each of these issues. The new methods require minimal practitioner input, are faster to run, and can be applied in more general settings.
نوع الوثيقة: thesis
وصف الملف: application/pdf
اللغة: unknown
Relation: https://eprints.qut.edu.au/251487/1/Imke%20Botha%20Thesis.pdf; Botha, Imke (2024) Adaptive Bayesian Algorithms for Complex State Space and Mathematical Models. PhD by Publication, Queensland University of Technology.; https://eprints.qut.edu.au/251487/; Faculty of Science
الاتاحة: https://eprints.qut.edu.au/251487/
Rights: free_to_read ; http://creativecommons.org/licenses/by-nc-nd/4.0/
رقم الانضمام: edsbas.79B23CA8
قاعدة البيانات: BASE