Academic Journal
Learning adiabatic quantum algorithms over optimization problems
العنوان: | Learning adiabatic quantum algorithms over optimization problems |
---|---|
المؤلفون: | Pastorello, Davide, Blanzieri, Enrico, Cavecchia Valter |
المساهمون: | Pastorello, Davide, Blanzieri, Enrico, Cavecchia, Valter |
سنة النشر: | 2021 |
المجموعة: | Università degli Studi di Trento: CINECA IRIS |
مصطلحات موضوعية: | Adiabatic quantum computing, Hybrid quantum-classical algorithms, Tabu search |
الوصف: | An adiabatic quantum algorithm is essentially given by three elements: An initial Hamiltonian with known ground state, a problem Hamiltonian whose ground state corresponds to the solution of the given problem, and an evolution schedule such that the adiabatic condition is satisfied. A correct choice of these elements is crucial for an efficient adiabatic quantum computation. In this paper, we propose a hybrid quantum-classical algorithm that, by solving optimization problems with an adiabatic machine, determines a problem Hamiltonian assuming restrictions on the class of available problem Hamiltonians. The scheme is based on repeated calls to the quantum machine into a classical iterative structure. In particular, we suggest a technique to estimate the encoding of a given optimization problem into a problem Hamiltonian and we prove the convergence of the algorithm. |
نوع الوثيقة: | article in journal/newspaper |
اللغة: | English |
Relation: | info:eu-repo/semantics/altIdentifier/wos/WOS:000658425400002; volume:2021, 3; issue:1; firstpage:2.1; lastpage:2.19; journal:QUANTUM MACHINE INTELLIGENCE; http://hdl.handle.net/11572/280449; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85114070229; https://link.springer.com/article/10.1007/s42484-020-00030-w |
DOI: | 10.1007/s42484-020-00030-w |
الاتاحة: | http://hdl.handle.net/11572/280449 https://doi.org/10.1007/s42484-020-00030-w https://link.springer.com/article/10.1007/s42484-020-00030-w |
Rights: | info:eu-repo/semantics/closedAccess |
رقم الانضمام: | edsbas.762E0BA9 |
قاعدة البيانات: | BASE |
DOI: | 10.1007/s42484-020-00030-w |
---|