Academic Journal

On the nonlinear Brascamp–Lieb inequality

التفاصيل البيبلوغرافية
العنوان: On the nonlinear Brascamp–Lieb inequality
المؤلفون: Bennett, Jonathan, Bez, Neal, Buschenhenke, Stefan, Cowling, Michael G., Flock, Taryn C.
بيانات النشر: Duke University Press
سنة النشر: 2020
المجموعة: Project Euclid (Cornell University Library)
مصطلحات موضوعية: multilinear inequalities, Radon-like transforms, near-extremizers, 42B37, 44A12, 52A40
الوصف: We prove a nonlinear variant of the general Brascamp–Lieb inequality. Our proof consists of running an efficient, or “tight,” induction-on-scales argument, which uses the existence of Gaussian near-extremizers to the underlying linear Brascamp–Lieb inequality (Lieb’s theorem) in a fundamental way. A key ingredient is an effective version of Lieb’s theorem, which we establish via a careful analysis of near-minimizers of weighted sums of exponential functions. Instances of this inequality are quite prevalent in mathematics, and we illustrate this with some applications in harmonic analysis.
نوع الوثيقة: text
وصف الملف: application/pdf
اللغة: English
تدمد: 0012-7094
1547-7398
Relation: https://projecteuclid.org/euclid.dmj/1605171714; Duke Math. J. 169, no. 17 (2020), 3291-3338
DOI: 10.1215/00127094-2020-0027
الاتاحة: https://projecteuclid.org/euclid.dmj/1605171714
https://doi.org/10.1215/00127094-2020-0027
Rights: Copyright 2020 Duke University Press
رقم الانضمام: edsbas.75ADABF7
قاعدة البيانات: BASE
الوصف
تدمد:00127094
15477398
DOI:10.1215/00127094-2020-0027