Academic Journal
mRNA level of antioxidant genes and activity of NADPH-generating enzymes in rotenone-induced parkinsonism in rats ; Уровень мРНК генов антиоксидантной системы и активность НАДФН-генерирующих ферментов при ротенон-индуцированном паркинсонизме у крыс
العنوان: | mRNA level of antioxidant genes and activity of NADPH-generating enzymes in rotenone-induced parkinsonism in rats ; Уровень мРНК генов антиоксидантной системы и активность НАДФН-генерирующих ферментов при ротенон-индуцированном паркинсонизме у крыс |
---|---|
المؤلفون: | E. D. Kryl’skii, G. A. Razuvaev, T. N. Popova, L. E. Nikhaev, A. I. Akinina, Е. Д. Крыльский, Г. А. Разуваев, Т. Н. Попова, Л. Е. Нихаев, А. И. Акинина |
المصدر: | Bulletin of Siberian Medicine; Том 22, № 2 (2023); 78-87 ; Бюллетень сибирской медицины; Том 22, № 2 (2023); 78-87 ; 1819-3684 ; 1682-0363 ; 10.20538/1682-0363-2023-22-2 |
بيانات النشر: | Siberian State Medical University, the Ministry of Healthcare of the Russian Federation |
سنة النشر: | 2023 |
المجموعة: | Bulletin of Siberian Medicine / Бюллетень сибирской медицины |
مصطلحات موضوعية: | НАДФ-изоцитратдегидрогеназа, oxidative stress, antioxidant system, glucose-6-phosphate dehydrogenase, NADPdependent isocitrate dehydrogenase, окислительный стресс, антиоксидантная система, глюкозо-6-фосфатдегидрогеназа |
الوصف: | Aim. To analyze the mRNA level of genes encoding antioxidant enzymes and the transcription factors Nrf2 and Foxo1 regulating their expression and the activity of glucose-6-phosphate dehydrogenase (G6PDH) and NADPdependent isocitrate dehydrogenase (NADP-IDH) and assess the correlation between these parameters, oxidative status, and motor coordination parameters in rats with rotenone-induced parkinsonism.Materials and methods. The study was performed on male Wistar rats aged 4–6 months and weighing 200–250 g. Parkinsonism was modeled by subcutaneous administration of rotenone for 10 days at a dose of 2.5 mg / kg. To confirm the development of the pathology, motor coordination tests and histological staining of the cerebral cortex and striatum with hematoxylin and eosin were used. The oxidative status was analyzed based on the levels of conjugated dienes, carbonyl amino acid residues in proteins, and α-tocopherol. The enzyme activity was studied spectrophotometrically by the formation of NADPH. Real-time PCR was used to analyze the level of gene mRNA.Results. During the study, an increase in serum and brain concentrations of conjugated dienes, carbonyl amino acid residues, and α-tocopherol was observed in the experimental group of rats compared to the controls. It could be associated with the redistribution of this compound between tissues during pathology development. The animals with experimental parkinsonism, in addition, were characterized by a decrease in the mRNA level of the Sod1, Gpx1, Gsr, Gsta2, Nfe2l2, and Foxo1 genes, as well as the activity of G6PDH and NADP-IDH. In the rats with experimental parkinsonism, a negative correlation of NADPH-IDH activity in the brain with serum α-tocopherol level and a positive correlation with Gpx1 and Foxo1 mRNA levels in the striatum were found. The level of oxidatively modified proteins in the brain of the animals with PD was negatively correlated with the concentration of Gsta2 mRNA in the striatum, while the specific activity of G6PDH in the serum was characterized ... |
نوع الوثيقة: | article in journal/newspaper |
وصف الملف: | application/pdf |
اللغة: | Russian English |
Relation: | https://bulletin.ssmu.ru/jour/article/view/5224/3396; https://bulletin.ssmu.ru/jour/article/view/5224/3419; Blauwendraat C., Nalls M.A., Singleton A.B. The genetic architecture of Parkinson’s disease. Lancet Neurol. 2020;19(2):170– 178. DOI:10.1016/S1474-4422(19)30287-X.; Raza C., Anjum R., Shakee N.U.A. Parkinson’s disease: Mechanisms, translational models and management strategies. Life Sci. 2019;226:77–90. DOI:10.1016/j.lfs.2019.03.057.; Trist B.G., Hare D.J., Double K.L. Oxidative stress in the aging substantia nigra and the etiology of Parkinson’s disease. Aging Cell. 2019;18(6):e13031. DOI:10.1111/acel.13031.; Hannan Md.A., Dash R., Sohag A.A.M., Haque Md.N., Moon I.S. Neuroprotection against oxidative stress: phytochemicals targeting TrkB signaling and the Nrf2-ARE antioxidant system. Front. Mol. Neurosci. 2020;13:116. DOI:10.3389/fnmol.2020.00116.; Xing Y., Li A., Yang Y., Li X., Zhang L., Guo H. The regulation of FOXO1 and its role in disease progression. Life Sciences. 2018;193:124–131. DOI:10.1016/j.lfs.2017.11.030.; Nóbrega-Pereira S., Fernandez-Marcos P.J., Brioche T., Gomez-Cabrera M.C., Salvador-Pascual A., Flores J.M. et al. G6PD protects from oxidative damage and improves health span in mice. Na.t Commun. 2016;7:10894. DOI:10.1038/ncomms10894.; Popova T., Pinheiro de Carvalho M.A.A., Matasova L., Medvedeva L. Regulation of mitochondrial NADP-isocitrate dehydrogenase in rat heart during ischemia. Mol. Cell Biochem. 2007;294(1–2):97–105. DOI:10.1007/s11010-006- 9249-9.; Ball N., Teo W.P., Chandra S., Chapman J. Parkinson’s disease and the environment. Front. Neurol. 2019;10:218. DOI:10.3389/fneur.2019.00218.; Farombi E.O., Awogbindin I.O., Farombi T.H., Oladele J.O., Izomoh E.R., Aladelokun O.B. et al. Neuroprotective role of kolaviron in striatal redo-inflammation associated with rotenone model of Parkinson’s disease. Neurotoxicology. 2019;73:132–141. DOI:10.1016/j.neuro.2019.03.005.; Крыльский Е.Д., Разуваев Г.А., Попова Т.Н., Акинина А.И., Нихаев Л.Е. Функционирование системы антиокислительной защиты при ротенониндуцированном паркинсонизме у крыс. Бюллетень экспериментальной биологии и медицины. 2021;171(6):701–707. DOI:10.47056/0365-9615-2021-171-6-701-707.; Ablat N., Lv D., Ren R., Xiaokaiti Y., Ma X., Zhao X. et al. Neuroprotective effects of a standardized flavonoid extract from safflower against a rotenone-induced rat model of Parkinson’s disease. Molecules. 2016;21(9):1107. DOI:10.3390/molecules21091107.; Sharma S., Kumar P., Deshmukh R. Neuroprotective potential of spermidine against rotenone induced Parkinson’s disease in rats. Neurochemistry International. 2018;116:104–111. DOI:10.1016/j.neuint.2018.02.010.; Park H.J., Lee P.H., Bang O.Y., Lee G., Ahn Y.H. Mesenchymal stem cells therapy exerts neuroprotection in a progressive animal model of Parkinson’s disease. Journal of Neurochemistry. 2008;107(1):141–151. DOI:10.1111/j.1471-4159.2008.05589.x.; Recknagel R.O., Ghoshal A.K. Lipoperoxidation of rat liver microsomal lipids induced by carbon tetrachloride. Nature. 1966;210(5041):1162–1163. DOI:10.1038/2101162a0.; Reznick A.Z., Packer L. Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 1994;233:357–363. DOI:10.1016/S0076-6879(94)33041-7.; Desai I.D., Martinez F.E. Bilirubin interference in the colorimetric assay of plasma vitamin E. Clin. Chim. Acta. 1986;154(3):247–250. DOI:10.1016/0009-8981(86)90040-9.; Sharma A., Weber D., Raupbach J., Dakal T.C., Fließbach K., Ramirez A. et al. Advanced glycation end products and protein carbonyl levels in plasma reveal sex-specific differences in Parkinson’s and Alzheimer’s disease. Redox. Biol. 2020;34:101546. DOI:10.1016/j.redox.2020.101546.; Tripanichkul W., Jaroensuppaperch E.-O. Ameliorating effects of curcumin on 6-OHDA-induced dopaminergic denervation, glial response, and SOD1 reduction in the striatum of hemiparkinsonian mice. Eur. Rev. Med. Pharmacol. Sci. 2013;17(10):1360–1368.; Toppo S., Vanin S., Bosello V., Tosatto S.C.E. Evolutionary and structural insights into the multifaceted glutathione peroxidase (Gpx) superfamily. Antioxid. Redox. Signal. 2008;10(9):1501–1514. DOI:10.1089/ars.2008.2057.; Liu J., Liu H., Zhao Z., Wang J., Guo D., Liu Y. Regulation of Actg1 and Gsta2 is possible mechanism by which capsaicin alleviates apoptosis in cell model of 6-OHDA-induced Parkinson’s disease. Biosci. Rep. 2020;40(6):BSR20191796. DOI:10.1042/BSR20191796.; Jayaram S., Krishnamurthy P.T. Role of microgliosis, oxidative stress and associated neuroinflammation in the pathogenesis of Parkinson’s disease: The therapeutic role of Nrf2 activators. Neurochem. Int. 2021;145:105014. DOI:10.1016/j.neuint.2021.105014.; Tejo F.V., Quintanilla R.A. Contribution of the Nrf2 pathway on oxidative damage and mitochondrial failure in Parkinson and Alzheimer’s disease. Antioxidants (Basel). 2021;10(7):1069. DOI:10.3390/antiox10071069.; Gong J., Zhang L., Zhang Q., Li X., Xia X.J., Liu Y.Y. et al. Lentiviral vector-mediated SHC3 silencing exacerbates oxidative stress injury in nigral dopamine neurons by regulating the PI3K-AKT-FoxO signaling pathway in rats with Parkinson’s disease. Cell Physiol. Biochem. 2018;49(3):971–984. DOI:10.1159/000493228.; Itsumi M., Inoue S., Elia A.J., Murakami K., Sasaki M., Lind E.F. et al. Idh1 protects murine hepatocytes from endotoxin-induced oxidative stress by regulating the intracellular NADP(+)/NADPH ratio. Cell Death Differ. 2015;22(11):1837–1845. DOI:10.1038/cdd.2015.38.; Wang Y.P., Zhou L.S., Zhao Y.Z., Wang S.W., Chen L.L., Liu L.X. et al. Regulation of G6PD acetylation by SIRT2 and KAT9 modulates NADPH homeostasis and cell survival during oxidative stress. EMBO J. 2014;33(12):1304–1320. DOI:10.1002/embj.201387224.; Mejías R., Villadiego J., Pintado C.O., Vime P.J., Gao L., Toledo-Aral J.J. et al. Neuroprotection by transgenic expression of glucose-6-phosphate dehydrogenase in dopaminergic nigrostriatal neurons of mice. Journal of Neuroscience. 2006;26(17):4500–4508. DOI:10.1523/JNEUROSCI.0122-06.2006.; Ulatowski L., Dreussi C., Noy N., Barnholtz-Sloan J., Klein E., Manor D. Expression of the α-tocopherol transfer protein gene is regulated by oxidative stress and common single-nucleotide polymorphisms. Free Radic. Biol. Med. 2012;53(12):2318– 2326. DOI:10.1016/j.freeradbiomed.2012.10.528.; Ulatowski L., Manor D. Vitamin E trafficking in neurologic health and disease. Annu. Rev. Nutr. 2013;33:87–103. DOI:10.1146/annurev-nutr-071812-161252.; https://bulletin.ssmu.ru/jour/article/view/5224 |
DOI: | 10.20538/1682-0363-2023-2-78-87 |
الاتاحة: | https://bulletin.ssmu.ru/jour/article/view/5224 https://doi.org/10.20538/1682-0363-2023-2-78-87 |
Rights: | Authors who publish with this journal agree to the following terms:Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access). ; Авторы, публикующие статьи в данном журнале, соглашаются на следующее:Авторы сохраняют за собой авторские права и предоставляют журналу право первой публикации работы, которая по истечении 6 месяцев после публикации автоматически лицензируется на условиях Creative Commons Attribution License , которая позволяет другим распространять данную работу с обязательным сохранением ссылок на авторов оригинальной работы и оригинальную публикацию в этом журнале.Авторы имеют право размещать их работу в сети Интернет (например в институтском хранилище или персональном сайте) до и во время процесса рассмотрения ее данным журналом, так как это может привести к продуктивному обсуждению и большему количеству ссылок на данную работу (См. The Effect of Open Access). |
رقم الانضمام: | edsbas.75163A92 |
قاعدة البيانات: | BASE |
DOI: | 10.20538/1682-0363-2023-2-78-87 |
---|