Optimizing distributed DEVS simulations with partitioning and Hidden Markov Model learning methods

التفاصيل البيبلوغرافية
العنوان: Optimizing distributed DEVS simulations with partitioning and Hidden Markov Model learning methods
المؤلفون: Herbez, Christopher, Ramat, Eric, Quesnel, Gauthier
المساهمون: Laboratoire d'Informatique Signal et Image de la Côte d'Opale (LISIC), Université du Littoral Côte d'Opale (ULCO), Unité de Mathématiques et Informatique Appliquées de Toulouse (MIAT INRA), Institut National de la Recherche Agronomique (INRA), ESM.
المصدر: Proceedings of the 29th European Simulation and Modelling Conference (ESM'2015) ; 29th European Simulation and Modelling Conference - ESM'2015 ; https://hal.science/hal-01604197 ; 29th European Simulation and Modelling Conference - ESM'2015, ESM., Oct 2015, Leicester, United Kingdom. 8 p
بيانات النشر: HAL CCSD
EUROSIS-ETI
سنة النشر: 2015
مصطلحات موضوعية: Graph weighting, Partition, Hidden Markov models, Simulation, DEVS, [SDV]Life Sciences [q-bio]
جغرافية الموضوع: United Kingdom
Time: Leicester, United Kingdom
الوصف: With the emergence of parallel computational infrastructures at low cost, reducing simulation time becomes again an issue of the research community in modeling and simulation. In this context, our previous papers presented a method to reduce the simulation time in a parallel DEVS context. This approach reduces simulation time without reaching the maximum gain. The partitioning method used does not take into account the dynamic of models. To address this problem, we propose in this paper an approach to weight the model graph to take into account this dynamic when partitioning. This paper presents the weighting graph process by learning of the dynamic of models states using Hidden Markov Models. The purpose of this article is to determine the quality of this weighting method compared to a simulation approach.
نوع الوثيقة: conference object
اللغة: English
ردمك: 978-90-77381-90-8
90-77381-90-2
Relation: hal-01604197; https://hal.science/hal-01604197; https://hal.science/hal-01604197/document; https://hal.science/hal-01604197/file/2015-03_1.pdf; PRODINRA: 407251
الاتاحة: https://hal.science/hal-01604197
https://hal.science/hal-01604197/document
https://hal.science/hal-01604197/file/2015-03_1.pdf
Rights: http://creativecommons.org/licenses/by-sa/ ; info:eu-repo/semantics/OpenAccess
رقم الانضمام: edsbas.73D1852A
قاعدة البيانات: BASE
الوصف
ردمك:9789077381908
9077381902