Dissertation/ Thesis
Innovative structure design for impact energy absorption and dissipation : road safety domain ; Développement de structures innovantes destinées à absorber et dissiper l'énergie d'un choc : application à la sécurité routière
العنوان: | Innovative structure design for impact energy absorption and dissipation : road safety domain ; Développement de structures innovantes destinées à absorber et dissiper l'énergie d'un choc : application à la sécurité routière |
---|---|
المؤلفون: | Tondut, Jeanne |
المساهمون: | Laboratoire de biomécanique et mécanique des chocs (LBMC), Institut National de Recherche sur les Transports et leur Sécurité (INRETS), Université de Lyon, Sylvie Ronel, Noëlie Di Cesare |
المصدر: | https://theses.hal.science/tel-04190530 ; Matériaux et structures en mécanique [physics.class-ph]. Université de Lyon, 2022. Français. ⟨NNT : 2022LYSE1125⟩. |
بيانات النشر: | CCSD |
سنة النشر: | 2022 |
المجموعة: | Université de Lyon: HAL |
مصطلحات موضوعية: | Optimization, Structural machanics, Crashworthiness, Architectured structures, Metaheuristics, Road Safety, Optimisation, Mécanique des structures, Crash, Structures architecturées, Méta-heuristiques, Sécurité Routière, [PHYS.MECA.MSMECA]Physics [physics]/Mechanics [physics]/Materials and structures in mechanics [physics.class-ph] |
الوصف: | Road safety and particularly the reduction of car crash accidents involving fixed obstacles is a societal concern. Most of the road networks are lined with many advanced road safety systems. These devices absorb the kinetic energy of crashing cars mostly by plastic deformation and can spread on several meters. Reducing the devices’ dimensions and the deceleration felt by the car crashed users is an important issue that can lead to a reduction of mortal car accidents. In order to solve this technical issue, an optimization process is applied to architectured structures, such as, honeycomb structures numerically modelled under car crash impact conditions. A new objective function based on the European standard has been developed in order to improve crash cushions capabilities while avoiding the peak deceleration felt by the car users by using a meta-heuristic optimization algorithm. The global optimization process has been performed by using the Inverse-PageRank-PSO algorithm applied on a FE model validated by experimental tests. The algorithm has led to an optimal configuration of honeycombs improving the performances of current road safety devices. The four optimal structures present a quasi-linear absorption curve, as recommended by European standards with a reduced size of 25% in the impact direction. Furthermore, an automatic kriging machine learning method, entitled AptM, has been developed in order to calibrate meta-heuristic algorithms parameters for solving efficiently lots of different optimization problems. The numerical results show that the AptM methodology allows a significant improvement of the convergence accuracy of meta-heuristics. AptM has been validated on a mathematical benchmark and then applied to truss structures optimization. ; La sécurité routière, et en particulier la réduction des accidents graves liés à un choc entre un véhicule et un obstacle fixe, est un enjeu sociétal important. La majeure partie du réseau routier est équipée de dispositifs de sécurité tels que des barrières ou des ... |
نوع الوثيقة: | doctoral or postdoctoral thesis |
اللغة: | French |
Relation: | NNT: 2022LYSE1125 |
الاتاحة: | https://theses.hal.science/tel-04190530 https://theses.hal.science/tel-04190530v1/document https://theses.hal.science/tel-04190530v1/file/TH2022TONDUTJEANNE.pdf |
Rights: | info:eu-repo/semantics/OpenAccess |
رقم الانضمام: | edsbas.724133AC |
قاعدة البيانات: | BASE |
الوصف غير متاح. |