Academic Journal

A Plug-and-Play Approach To Multiparametric Quantitative MRI:Image Reconstruction Using Pre-Trained Deep Denoisers

التفاصيل البيبلوغرافية
العنوان: A Plug-and-Play Approach To Multiparametric Quantitative MRI:Image Reconstruction Using Pre-Trained Deep Denoisers
المؤلفون: Fatania, Ketan, Pirkl, Carolin M., Menzel, Marion I., Hall, Peter, Golbabaee, Mohammad
المصدر: Fatania , K , Pirkl , C M , Menzel , M I , Hall , P & Golbabaee , M 2022 , A Plug-and-Play Approach To Multiparametric Quantitative MRI : Image Reconstruction Using Pre-Trained Deep Denoisers . in ISBI 2022 - Proceedings : 2022 IEEE International Symposium on Biomedical Imaging . , 9761603 , Proceedings - International Symposium on Biomedical Imaging , vol. 2022-March , IEEE , U. S. A. , 19th IEEE International Symposium on Biomedical Imaging, ISBI 2022 , Kolkata , India , 28/03/22 . https://doi.org/10.1109/ISBI52829.2022.9761603
بيانات النشر: IEEE
سنة النشر: 2022
مصطلحات موضوعية: Compressed Sensing, Deep Learning, Inverse Problems, Iterative Image Reconstruction, Magnetic Resonance Fingerprinting, Plug-and-Play, Quantitative MRI, /dk/atira/pure/subjectarea/asjc/2200/2204, name=Biomedical Engineering, /dk/atira/pure/subjectarea/asjc/2700/2741, name=Radiology Nuclear Medicine and imaging
الوصف: Current spatiotemporal deep learning approaches to Magnetic Resonance Fingerprinting (MRF) build artefact-removal models customised to a particular k-space subsampling pattern which is used for fast (compressed) acquisition. This may not be useful when the acquisition process is unknown during training of the deep learning model and/or changes during testing time. This paper proposes an iterative deep learning plug-and-play reconstruction approach to MRF which is adaptive to the forward acquisition process. Spatiotemporal image priors are learned by an image denoiser i.e. a Convolutional Neural Network (CNN), trained to remove generic white gaussian noise (not a particular subsampling artefact) from data. This CNN denoiser is then used as a data-driven shrinkage operator within the iterative reconstruction algorithm. This algorithm with the same denoiser model is then tested on two simulated acquisition processes with distinct subsampling patterns. The results show consistent dealiasing performance against both acquisition schemes and accurate mapping of tissues' quantitative bio-properties. Software available: https://github.com/ketanfatania/QMRI-PnP-Recon-POC
نوع الوثيقة: article in journal/newspaper
وصف الملف: application/pdf
اللغة: English
ردمك: 978-1-66542-923-8
1-66542-923-2
Relation: urn:ISBN:9781665429238
DOI: 10.1109/ISBI52829.2022.9761603
الاتاحة: https://researchportal.bath.ac.uk/en/publications/0888941d-c7be-423f-83a8-2be789567c97
https://doi.org/10.1109/ISBI52829.2022.9761603
https://purehost.bath.ac.uk/ws/files/239059724/Plug_and_Play_QMRI_MRF_Reconstruction_2022.pdf
http://www.scopus.com/inward/record.url?scp=85129577594&partnerID=8YFLogxK
https://arxiv.org/abs/2202.05269
Rights: info:eu-repo/semantics/openAccess
رقم الانضمام: edsbas.712C5F15
قاعدة البيانات: BASE
الوصف
ردمك:9781665429238
1665429232
DOI:10.1109/ISBI52829.2022.9761603