Equitable Data Valuation for Semantic Segmentation

التفاصيل البيبلوغرافية
العنوان: Equitable Data Valuation for Semantic Segmentation
المؤلفون: Tejomay, Abhiroop, Ramachandra, Vikas
بيانات النشر: Zenodo
سنة النشر: 2023
المجموعة: Zenodo
مصطلحات موضوعية: Data quality, Shapley, Artificial intelligence, machine learning, semantic image segmentation
الوصف: In this study, the Shapley value is used to evaluate training data for challenging supervised learning tasks, particularly semantic segmentation. The Shapley value, originating from cooperative game theory is appealing as it satisfies the set of properties required by a data value notion. But, the Shapley value suffers from exponential complexity compute time. Among the approximation algorithms for the Shapley value, the approximation using the K-nearest neighbor (KNN) classifier, called KNN Shapley, is the most efficient as it requires training the model only once while the other approximation algorithms require training the model multiple times. We propose a modification to the KNN Shapley value, to apply to semantic segmentation tasks, providing a measure to determine the quality of data to train semantic segmentation algorithms. We evaluate the values produced by KNN Shapley algorithm in the label noise correction scenario and see that the values produced by the modified algorithm can detect noisy labels
نوع الوثيقة: report
اللغة: unknown
Relation: https://doi.org/10.5281/zenodo.8298884; https://doi.org/10.5281/zenodo.8298885; oai:zenodo.org:8298885
DOI: 10.5281/zenodo.8298885
الاتاحة: https://doi.org/10.5281/zenodo.8298885
Rights: info:eu-repo/semantics/openAccess ; Creative Commons Attribution 4.0 International ; https://creativecommons.org/licenses/by/4.0/legalcode
رقم الانضمام: edsbas.70978AD8
قاعدة البيانات: BASE