Architecture of the Joint Autoencoder.

التفاصيل البيبلوغرافية
العنوان: Architecture of the Joint Autoencoder.
المؤلفون: Ege Altan (11768156), Sara A. Solla (8163024), Lee E. Miller (11768159), Eric J. Perreault (11768162)
سنة النشر: 2021
المجموعة: Smithsonian Institution: Digital Repository
مصطلحات موضوعية: Neuroscience, Pharmacology, Biotechnology, Mathematical Sciences not elsewhere classified, Information Systems not elsewhere classified, specific function controlled, massive redundancy implies, several representative algorithms, linear algorithms overestimate, manifold underlying multi, nonlinearly embedded data, neural activity within, analyzing neural activity, important challenges associated, denoising algorithm based, algorithms &# 8217, dimensional manifold within, known intrinsic dimensionality, neural activity, population activity, many algorithms, intrinsic dimensionality, dimensional recordings, algorithms overestimated, algorithms failed, &# 8220, free data, experimental data, available data, %22">xlink ">
الوصف: Channels of the 96-dimensional simulated datasets were randomly partitioned into two sets of signals (blue and yellow). Each 48-dimensional set was reconstructed through the corresponding D -dimensional subspace, Z 1 and Z 2 (green). The reconstructed outputs of the networks were the denoised channels.
نوع الوثيقة: still image
اللغة: unknown
Relation: https://figshare.com/articles/figure/Architecture_of_the_Joint_Autoencoder_/17096234
DOI: 10.1371/journal.pcbi.1008591.g002
الاتاحة: https://doi.org/10.1371/journal.pcbi.1008591.g002
Rights: CC BY 4.0
رقم الانضمام: edsbas.6E08C2D1
قاعدة البيانات: BASE
الوصف
DOI:10.1371/journal.pcbi.1008591.g002