Non negative sparse representation for Wiener based source separation with a single sensor

التفاصيل البيبلوغرافية
العنوان: Non negative sparse representation for Wiener based source separation with a single sensor
المؤلفون: Benaroya, Laurent, Mcdonagh, Lorcan, Bimbot, Frédéric, Gribonval, Rémi
المساهمون: Speech and sound data modeling and processing (METISS), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria)
المصدر: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2003) ; https://hal.inria.fr/inria-00574784 ; IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2003), Apr 2003, Hong-Kong, Hong Kong SAR China. pp.VI/613--VI/616, ⟨10.1109/ICASSP.2003.1201756⟩
بيانات النشر: HAL CCSD
IEEE
سنة النشر: 2003
المجموعة: Université de Rennes 1: Publications scientifiques (HAL)
مصطلحات موضوعية: [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing, [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing
جغرافية الموضوع: Hong-Kong, Hong Kong SAR China
الوصف: International audience ; We propose a new method to perform the separation of two sound sources from a single sensor. This method generalizes the Wiener filtering with locally stationary, non gaussian, parametric source models. The method involves a learning phase for which we propose three different algorithm. In the separation phase, we use a sparse non negative decomposi- tion algorithm of our own. The algorithms are evaluated on the separation of real audio data.
نوع الوثيقة: conference object
اللغة: English
Relation: inria-00574784; https://hal.inria.fr/inria-00574784; https://hal.inria.fr/inria-00574784/document; https://hal.inria.fr/inria-00574784/file/06-00613.pdf
DOI: 10.1109/ICASSP.2003.1201756
الاتاحة: https://hal.inria.fr/inria-00574784
https://hal.inria.fr/inria-00574784/document
https://hal.inria.fr/inria-00574784/file/06-00613.pdf
https://doi.org/10.1109/ICASSP.2003.1201756
Rights: info:eu-repo/semantics/OpenAccess
رقم الانضمام: edsbas.6C3FF0DB
قاعدة البيانات: BASE
الوصف
DOI:10.1109/ICASSP.2003.1201756