Conference
Non negative sparse representation for Wiener based source separation with a single sensor
العنوان: | Non negative sparse representation for Wiener based source separation with a single sensor |
---|---|
المؤلفون: | Benaroya, Laurent, Mcdonagh, Lorcan, Bimbot, Frédéric, Gribonval, Rémi |
المساهمون: | Speech and sound data modeling and processing (METISS), Institut de Recherche en Informatique et Systèmes Aléatoires (IRISA), Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Université de Rennes (UR)-Institut National des Sciences Appliquées - Rennes (INSA Rennes), Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Inria Rennes – Bretagne Atlantique, Institut National de Recherche en Informatique et en Automatique (Inria) |
المصدر: | IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2003) ; https://hal.inria.fr/inria-00574784 ; IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP 2003), Apr 2003, Hong-Kong, Hong Kong SAR China. pp.VI/613--VI/616, ⟨10.1109/ICASSP.2003.1201756⟩ |
بيانات النشر: | HAL CCSD IEEE |
سنة النشر: | 2003 |
المجموعة: | Université de Rennes 1: Publications scientifiques (HAL) |
مصطلحات موضوعية: | [INFO.INFO-TS]Computer Science [cs]/Signal and Image Processing, [SPI.SIGNAL]Engineering Sciences [physics]/Signal and Image processing |
جغرافية الموضوع: | Hong-Kong, Hong Kong SAR China |
الوصف: | International audience ; We propose a new method to perform the separation of two sound sources from a single sensor. This method generalizes the Wiener filtering with locally stationary, non gaussian, parametric source models. The method involves a learning phase for which we propose three different algorithm. In the separation phase, we use a sparse non negative decomposi- tion algorithm of our own. The algorithms are evaluated on the separation of real audio data. |
نوع الوثيقة: | conference object |
اللغة: | English |
Relation: | inria-00574784; https://hal.inria.fr/inria-00574784; https://hal.inria.fr/inria-00574784/document; https://hal.inria.fr/inria-00574784/file/06-00613.pdf |
DOI: | 10.1109/ICASSP.2003.1201756 |
الاتاحة: | https://hal.inria.fr/inria-00574784 https://hal.inria.fr/inria-00574784/document https://hal.inria.fr/inria-00574784/file/06-00613.pdf https://doi.org/10.1109/ICASSP.2003.1201756 |
Rights: | info:eu-repo/semantics/OpenAccess |
رقم الانضمام: | edsbas.6C3FF0DB |
قاعدة البيانات: | BASE |
DOI: | 10.1109/ICASSP.2003.1201756 |
---|