Academic Journal

An asymptotic expansion for the fractional p -Laplacian and for gradient-dependent nonlocal operators

التفاصيل البيبلوغرافية
العنوان: An asymptotic expansion for the fractional p -Laplacian and for gradient-dependent nonlocal operators
المؤلفون: Bucur C., Squassina M.
المساهمون: Bucur, Claudia Dalia, Squassina, Marco
بيانات النشر: World Scientific
سنة النشر: 2022
المجموعة: Università Cattolica del Sacro Cuore: PubliCatt
مصطلحات موضوعية: fractional p -Laplacian, gradient-dependent operators, infinite fractional Laplacian, Mean value formulas, nonlocal p -Laplacian, Settore MAT/05 - ANALISI MATEMATICA
الوصف: Mean value formulas are of great importance in the theory of partial differential equations: many very useful results are drawn, for instance, from the well-known equivalence between harmonic functions and mean value properties. In the nonlocal setting of fractional harmonic functions, such an equivalence still holds, and many applications are nowadays available. The nonlinear case, corresponding to the p-Laplace operator, has also been recently investigated, whereas the validity of a nonlocal, nonlinear, counterpart remains an open problem. In this paper, we propose a formula for the nonlocal, nonlinear mean value kernel, by means of which we obtain an asymptotic representation formula for harmonic functions in the viscosity sense, with respect to the fractional (variational) p-Laplacian (for p ≥ 2) and to other gradient-dependent nonlocal operators.
نوع الوثيقة: article in journal/newspaper
اللغة: English
Relation: info:eu-repo/semantics/altIdentifier/wos/WOS:000789113100003; volume:24; issue:04; firstpage:1; lastpage:34; numberofpages:34; issueyear:2022; journal:COMMUNICATIONS IN CONTEMPORARY MATHEMATICS; http://hdl.handle.net/10807/203970; info:eu-repo/semantics/altIdentifier/scopus/2-s2.0-85103445801
DOI: 10.1142/S0219199721500218
الاتاحة: http://hdl.handle.net/10807/203970
https://doi.org/10.1142/S0219199721500218
رقم الانضمام: edsbas.69BF69CC
قاعدة البيانات: BASE
الوصف
DOI:10.1142/S0219199721500218