التفاصيل البيبلوغرافية
العنوان: |
Modeling Quantum Particles Falling into a Black Hole: The Deep Interior Limit |
المؤلفون: |
Alejandro Perez, Salvatore Ribisi, Sami Viollet |
المصدر: |
Universe; Volume 9; Issue 2; Pages: 75 |
بيانات النشر: |
Multidisciplinary Digital Publishing Institute |
سنة النشر: |
2023 |
المجموعة: |
MDPI Open Access Publishing |
مصطلحات موضوعية: |
quantum gravity, quantum black holes |
الوصف: |
In this paper, we construct a solvable toy model of the quantum dynamics of the interior of a spherical black hole with falling spherical scalar field excitations. We first argue about how some aspects of the quantum gravity dynamics of realistic black holes emitting Hawking radiation can be modeled using Kantowski–Sachs solutions with a massless scalar field when one focuses on the deep interior region r≪M (including the singularity). Further, we show that in the r≪M regime, and in suitable variables, the KS model becomes exactly solvable at both the classical and quantum levels. The quantum dynamics inspired by loop quantum gravity is revisited. We propose a natural polymer quantization where the area a of the orbits of the rotation group is quantized. The polymer (or loop) dynamics is closely related to the Schroedinger dynamics away from the singularity with a form of continuum limit naturally emerging from the polymer treatment. The Dirac observable associated with the mass is quantized and shown to have an infinite degeneracy associated with the so-called ϵ-sectors. Suitable continuum superpositions of these are well-defined distributions in the fundamental Hilbert space and satisfy the continuum Schroedinger dynamics. |
نوع الوثيقة: |
text |
وصف الملف: |
application/pdf |
اللغة: |
English |
Relation: |
Foundations of Quantum Mechanics and Quantum Gravity; https://dx.doi.org/10.3390/universe9020075 |
DOI: |
10.3390/universe9020075 |
الاتاحة: |
https://doi.org/10.3390/universe9020075 |
Rights: |
https://creativecommons.org/licenses/by/4.0/ |
رقم الانضمام: |
edsbas.678039F7 |
قاعدة البيانات: |
BASE |