التفاصيل البيبلوغرافية
العنوان: |
Bresse systems with localized Kelvin-Voigt dissipation |
المؤلفون: |
Aguilera Contreras, Gabriel, Munoz Rivera, Jaime E. |
المصدر: |
Electronic Journal of Differential Equations, 2021, San Marcos, Texas: Texas State University and University of North Texas. |
بيانات النشر: |
Texas State University, Department of Mathematics |
سنة النشر: |
2022 |
المجموعة: |
Texas State University: Digital Collections Repository |
مصطلحات موضوعية: |
Bresse beam, Transmission problem, Exponential stability, Localized viscoelastic dissipative mechanism, Polynomial stability |
الوصف: |
We study the effect of localized viscoelastic dissipation for curved beams. We consider a circular beam with three components, two of them viscous with constitutive laws of Kelvin-Voigt type, one continuous and the other discontinuous. The third component is elastic without any dissipative mechanism. Our main result is that the rate of decay depends on the position of each component. More precisely, we prove that the model is exponentially stable if and only if the viscous component with discontinuous constitutive law is not in the center of the beam. We prove that when there is no exponential stability, the solution decays polynomially. ; Mathematics |
نوع الوثيقة: |
other/unknown material |
وصف الملف: |
Text; 14 pages; 1 file (.pdf); application/pdf |
اللغة: |
English |
تدمد: |
1072-6691 |
Relation: |
Aguilera Contreras, G., & Muñoz-Rivera, J. E. (2021). Bresse systems with localized Kelvin-Voigt dissipation. Electronic Journal of Differential Equations, 2021(90), pp. 1-14.; https://digital.library.txstate.edu/handle/10877/16248 |
الاتاحة: |
https://digital.library.txstate.edu/handle/10877/16248 |
Rights: |
This work is licensed under a Creative Commons Attribution 4.0 International License. |
رقم الانضمام: |
edsbas.6621EC3C |
قاعدة البيانات: |
BASE |