Bresse systems with localized Kelvin-Voigt dissipation

التفاصيل البيبلوغرافية
العنوان: Bresse systems with localized Kelvin-Voigt dissipation
المؤلفون: Aguilera Contreras, Gabriel, Munoz Rivera, Jaime E.
المصدر: Electronic Journal of Differential Equations, 2021, San Marcos, Texas: Texas State University and University of North Texas.
بيانات النشر: Texas State University, Department of Mathematics
سنة النشر: 2022
المجموعة: Texas State University: Digital Collections Repository
مصطلحات موضوعية: Bresse beam, Transmission problem, Exponential stability, Localized viscoelastic dissipative mechanism, Polynomial stability
الوصف: We study the effect of localized viscoelastic dissipation for curved beams. We consider a circular beam with three components, two of them viscous with constitutive laws of Kelvin-Voigt type, one continuous and the other discontinuous. The third component is elastic without any dissipative mechanism. Our main result is that the rate of decay depends on the position of each component. More precisely, we prove that the model is exponentially stable if and only if the viscous component with discontinuous constitutive law is not in the center of the beam. We prove that when there is no exponential stability, the solution decays polynomially. ; Mathematics
نوع الوثيقة: other/unknown material
وصف الملف: Text; 14 pages; 1 file (.pdf); application/pdf
اللغة: English
تدمد: 1072-6691
Relation: Aguilera Contreras, G., & Muñoz-Rivera, J. E. (2021). Bresse systems with localized Kelvin-Voigt dissipation. Electronic Journal of Differential Equations, 2021(90), pp. 1-14.; https://digital.library.txstate.edu/handle/10877/16248
الاتاحة: https://digital.library.txstate.edu/handle/10877/16248
Rights: This work is licensed under a Creative Commons Attribution 4.0 International License.
رقم الانضمام: edsbas.6621EC3C
قاعدة البيانات: BASE